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Abstract 

Rockfall research has made significant progress since the 1980s, with considerable 

improvements made in terms of design of protection measures, invention of new systems 

such as self-cleaning meshes, draperies and attenuators, and of rockfall trajectory modelling. 

The latter is a key step of the design of rockfall protection structures and hazard assessment, 

as it provides information about impact energy and possible trajectories of blocks. After a 

rockfall event, breakage of rocks is often observed. Rock fragmentation is one aspect of 

rockfall that is still poorly understood and usually not modelled because the current state-of-

the-art knowledge is not sufficient to predict it or model it adequately. Indeed, it is a complex 

phenomenon influenced by many factors, such as rock strength, presence and properties of 

discontinuities in the block, stiffness of the ground, block shape and impact conditions.  

In this thesis, an innovative experimental fragmentation cell is presented to produce 

high-quality fragmentation data that will advance fragmentation knowledge.  The cell was 

designed to conduct controlled vertical drop tests and record key impact parameters 

including impact force, impulse, impact duration, translational and rotational velocities (of 

the block before impact and its fragments after impact) and all energy components pre-

impact and post-impact. The cell is equipped with four high-speed cameras and two mirrors 

providing six views, used for the accurate reconstruction of 3D trajectories of blocks and 

fragments, in translation and rotation.  

An extensive campaign of drop tests using artificial rock spheres of different 

diameter (50, 75 and 100 mm) and different mortar strength was carried out. More than 360 

spheres were dropped with different impact energy in order to investigate the survival 

probability of spheres at impact, size frequency distribution of fragments, trajectory of 

fragments, fragmentation patterns, distribution of energy amongst fragments, key energy 

dissipation mechanisms, and more.  
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The device was first validated using several series of drop tests and its ability to 

reconstruct 3D trajectories, including rotation was verified. Then, it was found that the 

survival probability of spheres upon drop tests follows a linear distribution, opposed to a 

Weibull distribution as often observed for breakage of particles. It is also shown that the 

survival probability is size dependent: the larger the spheres, the more energy is required to 

initiate fragmentation.  

For the testing conditions considered, it was found that the amount of energy 

dissipated in fragmentation represents about 3% of the kinetic energy at impact and can be 

considered constant in the range of 5 to 10 m/s. The extensive fragmentation data clearly 

indicates that the assumption kinetic energy can be distributed to fragments proportionally 

to their mass (often made in fragmentation models) is not valid. More research is required to 

understand the process of kinetic energy distribution amongst fragments. 

A key point of this research was to tackle the fragmentation phenomenon from a 

stochastic point of view. The natural variability in material properties and block shape (albeit 

using the same material) implies that the amount of energy required to fragment a rock is not 

a unique value but a probability distribution. A novel model was proposed to predict the 

survival probability of brittle spheres upon impact based on the statistical viability of material 

strength. The model is based on theoretically derived conversion factors used to convert the 

critical work required to fail mortar cylinders in indirect tension (i.e. by Brazilian test) into 

the critical kinetic energy at failure in drop tests. The conversion factors account for the 

shape and size of the specimens tested and the increase of strength under dynamic loading 

(strain rate effect). The model was satisfactorily validated (relative errors of less than 15%) 

for three different sphere diameters and two mortar strengths. This model constitutes the 

first step into the prediction of survival probability of natural blocks. As far as the author 

knows, this model is the first of its kind. 
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𝐸𝐸𝑘𝑘𝑅𝑅,𝑖𝑖
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𝐹𝐹 Force 

𝐹𝐹1,𝐹𝐹2,𝐹𝐹3 Forces recorded from the three load cells under the slab 

𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑) Force required to reach failure of a mortar disc of diameter 𝑑𝑑 

under quasi static indirect tension (Brazilian test) 

𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟  Critical value of force required to reach failure of a mortar disc of 

diameter 𝑑𝑑 under quasi static indirect tension (Brazilian test) 

𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) Force required to reach failure of a mortar sphere of diameter 𝐷𝐷 

under dynamic impact 

𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷)
𝑐𝑐𝑟𝑟  Critical value of force required to reach failure of a mortar sphere 

of diameter 𝐷𝐷 under dynamic impact 
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𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 Estimated impact force 

𝐹𝐹𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅��������� Impact force recorded from the top load cell 

𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑) Force required to reach failure of a mortar sphere of diameter 𝑑𝑑 

under quasi static compression 

𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷) Force required to reach failure of mortar spheres of diameter 𝐷𝐷 

under quasi static compression 

𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷)
𝑐𝑐𝑟𝑟  Critical value of force required to reach failure of mortar spheres of 

diameter 𝐷𝐷 under quasi static compression 

𝐹𝐹𝑇𝑇 Transmitted force corresponding to the sum of the three forces 

recorded from the load cells under the slab 

𝐺𝐺 Gradient of the cumulative Weibull curve 

ℎ Thickness of the disc used for the Brazilian test 

ℎ𝑠𝑠 Thickness of the slab 

𝐼𝐼𝐼𝐼𝑅𝑅 Increase in strain rate between quasi static tests and dynamic 

impact 

𝐼𝐼𝐼𝐼 , 𝐼𝐼𝐼𝐼𝐼𝐼 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 Moments of inertia for the principal axes 

𝐼𝐼𝐼𝐼,𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 Moments of inertia for the principal axes of the fragment 𝑖𝑖 

𝐽𝐽 Impulse 

𝐽𝐽𝑐𝑐 Impulse at maximum compression (i.e. at the point where the 

normal velocity is temporary equal to zero) 

𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 Estimated total impulse (i.e. at the end of the impact when the 

body rebounds and separates from the surface) 

𝐽𝐽𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅��������� Impulse computed using top load cell data 

𝑘𝑘 Stiffness of the system composed by the slab and three bottom 

load cells 

𝐾𝐾 Stress intensity factor 

𝐾𝐾𝐼𝐼𝑐𝑐 Fracture toughness 

LC1, LC2, LC3 Load cells 

𝑚𝑚 Mass of the impacting object (sphere) 

𝑚𝑚𝑖𝑖 Mass of fragment 𝑖𝑖 

𝑚𝑚𝑠𝑠 Mass of the slab 

𝑚𝑚𝑅𝑅𝑡𝑡𝑅𝑅 Sum of the masses of all fragments 
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M1, M1*, M2, M3 Mixtures of mortar 

𝑛𝑛 Number of fragments 

𝑁𝑁 Number of tests performed, for a given impact energy, to ascertain 

a given value of survival probability 

𝑁𝑁𝑓𝑓 Number of tests that resulted in fragmentation of sphere, for a 

given impact energy 

𝑝𝑝 Momentum 

𝑅𝑅1,𝑅𝑅2 Radius of the sphere and the slab 

𝑅𝑅� Equivalent radius 

𝐼𝐼𝑆𝑆 Survival probability 

𝐼𝐼𝑆𝑆𝑓𝑓𝑖𝑖𝑅𝑅 Fitted survival probability 

𝑡𝑡 Time 

𝑡𝑡𝐵𝐵𝑇𝑇 Average time required to fail mortar discs in indirect tension 

(Brazilian test) 

𝑡𝑡𝑐𝑐 Period of the elastic compression 

𝑡𝑡𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅  Average duration of impacts for the drop tests 

𝑣𝑣 Absolute translational velocity 

𝑣𝑣𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟 Velocity of the slab after filtering 

𝑣𝑣𝑖𝑖 Absolute translational velocity of fragment 𝑖𝑖 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 Impact velocity 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷) Impact velocity of a sphere of diameter 𝐷𝐷 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷)
𝑐𝑐𝑟𝑟  Critical value of impact velocity of sphere of diameter 𝐷𝐷 upon 

dynamic impact 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑁𝑁 Normal component of the impact velocity 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑇𝑇 Tangential component of the impact velocity 

𝑣𝑣𝑎𝑎 Propagation velocity of quasi-longitudinal waves in the slab 

𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟 Rebound velocity 

𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑁𝑁 Normal component of the rebound velocity 

𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑇𝑇 Tangential component of the rebound velocity 

𝑣𝑣𝑥𝑥𝑥𝑥 Horizontal component of the translational velocity 

𝑣𝑣𝑥𝑥𝑥𝑥,𝑖𝑖 Horizontal component of the translational velocity of fragment 𝑖𝑖 
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𝑣𝑣𝑥𝑥 Yield velocity 

𝑣𝑣𝑧𝑧 Vertical component of the translational velocity 

𝑣𝑣𝑧𝑧,𝑖𝑖 Vertical component of the translational velocity of fragment 𝑖𝑖 

V1, V2, V3, V4 Physical viewpoints 

V5, V6 Virtual viewpoints 

VH Visual Hull 

𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) Work required to fail a sphere of diameter 𝑑𝑑 in quasi static 

compression 

𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷) Work required to fail a sphere of diameter 𝐷𝐷 in quasi static 

compression 

𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑) Work required to fail a disc of diameter 𝑑𝑑 in quasi static indirect 

tension (Brazilian test) 

𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟  Critical value of work required to fail a disc of diameter 𝑑𝑑 in quasi 

static indirect tension (Brazilian test) 

𝑌𝑌𝑖𝑖,𝑌𝑌𝑠𝑠,𝑌𝑌𝑐𝑐 Elastic modulus of the mortar, steel and concrete slab (referred as 

system slab plus load cells), respectively 

𝑌𝑌�𝑖𝑖𝑐𝑐,𝑌𝑌�𝑖𝑖𝑠𝑠 Equivalent elastic modulus of the mortar-concrete slab (referred as 

system slab plus load cells) and mortar-steel platens, respectively 

𝑧𝑧, �̇�𝑧, �̈�𝑧 Displacement, velocity and acceleration of the slab 

𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟 Displacement of the slab after filtering 

𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟,𝐻𝐻𝐻𝐻𝐹𝐹   Displacement of the slab after filtering and after applying high pass 

filter 

𝑧𝑧𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 Max displacement of the slab 

𝛼𝛼 Proportion of total deformation of the sphere/slab system upon 

dynamic impact that corresponds to the deformation of the sphere 

𝛽𝛽 Non-dimensional viscous damping coefficient 

𝛾𝛾 Surface energy per unit area (or so-called strain energy release rate) 

𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑) Reduction in diameter (deformation) of a mortar disc of diameter 

𝑑𝑑 at failure under quasi static indirect tension (Brazilian test) 

𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟  Critical value of reduction in diameter of a mortar disc of diameter 

𝑑𝑑 at failure under quasi static indirect tension (Brazilian test) 
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𝛿𝛿𝑐𝑐 Deformation of an infinitesimal particle at the maximum 

compression 

𝛿𝛿𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) Reduction in diameter of a mortar sphere of diameter 𝐷𝐷 at failure 

under dynamic impact 

𝛿𝛿𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷)
𝑐𝑐𝑟𝑟  Critical value of reduction in diameter of a mortar sphere of 

diameter 𝐷𝐷 at failure under dynamic impact 

𝛿𝛿𝑓𝑓 Final deformation of an infinitesimal particle after impact 

𝛿𝛿𝑆𝑆𝐿𝐿(𝑑𝑑) Reduction in diameter of a mortar sphere of diameter 𝑑𝑑 at failure 

under quasi static compression 

𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷) Reduction in diameter of a mortar sphere of diameter 𝐷𝐷 at failure 

under quasi static compression 

𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷)
𝑐𝑐𝑟𝑟  Critical value of reduction in diameter of a mortar sphere of 

diameter 𝐷𝐷 at failure under quasi static compression 

∆𝐸𝐸𝑑𝑑 Energy loss in elastic-plastic deformation 

∆𝐸𝐸𝑓𝑓𝑟𝑟 Energy loss to create the fracture surfaces 

∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 Energy loss associated to the elastic displacement of the slab 

∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅 Total energy loss associated with the impact 

∆𝐸𝐸𝑟𝑟 Energy loss in elastic wave propagation 

∆𝑡𝑡 Theoretical impact duration 

∆𝑡𝑡𝑖𝑖 Direct measurement of the impact duration by the pressure sensor 

∆𝑡𝑡𝑖𝑖,𝐿𝐿𝐿𝐿  Direct measurement of the impact duration by the top load cell 

∆𝑡𝑡𝑅𝑅𝑖𝑖 Transmitted impact duration recorded from the load cells under 

the slab 

𝜃𝜃𝑖𝑖 Impact angle 

𝜃𝜃𝑟𝑟 Rebound angle 

𝜗𝜗𝑥𝑥 Ratio of mean indentation pressure (assumed fully plastic) to 

uniaxial yield stress 

𝜆𝜆 Inelasticity parameter 

𝜇𝜇 Weibull shape parameter 

𝜇𝜇𝐵𝐵𝑇𝑇−𝐹𝐹 Weibull shape parameter pertaining to the distribution of 

maximum force for quasi static indirect tension tests (Brazilian test) 
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𝜇𝜇𝐵𝐵𝑇𝑇−𝑊𝑊 Weibull shape parameter pertaining to the distribution of work 

required to fail discs under quasi static indirect tension test 

(Brazilian test) 

𝜇𝜇𝐸𝐸 Weibull shape parameter pertaining to the survival probability of 

the drop tests, expressed in terms of kinetic energy 

𝜇𝜇𝑆𝑆𝐿𝐿−𝑊𝑊 Weibull shape parameter pertaining to the distribution of work 

required to fail spheres in compression 

𝜇𝜇𝑣𝑣 Weibull shape parameter pertaining to the survival probability of 

the drop tests, expressed in terms of impact velocity 

𝜈𝜈𝑖𝑖, 𝜈𝜈𝑠𝑠, 𝜈𝜈𝑐𝑐 Poisson’s ratio of the mortar, steel and concrete slab (referred as 

system slab plus load cells), respectively 

𝜌𝜌1, 𝜌𝜌2 Density of the mortar sphere and the concrete slab (referred as 

system slab plus load cells) 

𝜎𝜎 Stress 

𝜎𝜎𝑐𝑐 Unconfined compressive strength 

𝜎𝜎𝑐𝑐𝑟𝑟 Weibull scale parameter for the stress 𝜎𝜎, also called critical value of 

𝜎𝜎 

𝜎𝜎𝑅𝑅 Tensile strength 

𝜎𝜎𝑥𝑥 Yield stress of the impacting material (sphere) 

Ψ𝑠𝑠 Slope angle 

𝜔𝜔 Absolute rotational velocity 

𝜔𝜔𝑟𝑟𝑎𝑎𝑓𝑓 Reference absolute rotational velocity 

𝜔𝜔𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼 Rotational velocities around the 3 principal axes 

𝜔𝜔𝐼𝐼,𝑖𝑖 ,𝜔𝜔𝐼𝐼𝐼𝐼,𝑖𝑖 ,𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 Rotational velocities around the 3 principal axes of fragment 𝑖𝑖 
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1 Introduction 

1.1 Background 
Since the 1980s, significant progress has been made on rockfall protection systems, 

with a significant increase of system capacity (impact energy up to 10 MJ can be successfully 

dissipated by some systems) and the invention of innovative solutions such as self-cleaning 

systems, draperies and attenuators (Turner and Schuster 2013).  

Designing rockfall protection structures requires the estimation of the trajectory and 

energy of rocks falling down a slope. Starting from an initial energy potential defined by the 

block’s mass and initial elevation, a falling rock gains kinetic energy as it falls and loses energy 

at each impact with the slope. Although trajectory modelling has also seen significant 

improvements over the years (e.g. advanced 3D modelling), there remains one aspect of 

rockfall that has largely been left unaddressed and is still poorly understood: rock 

fragmentation upon impact. Fragmentation is often observed post rockfall events (Agliardi 

and Crosta 2003) and it is recognised as critical for adequate rockfall risk management 

(Jaboyedoff et al. 2005; Volkwein et al. 2011). It is a very complex phenomenon influenced 

by the presence of discontinuities in the block including their persistence, shape and 

orientation at the moment of the impact; the intact and jointed rock strength; the impacting 

energy; stiffness of the ground; impact angle and impact velocity (Giacomini et al. 2009; 

Wang and Tonon 2011). 

Fragmentation should be accounted during rockfall protection design for a number 

of reasons:  

• If fragmentation occurs, a significant amount of energy will be dissipated in 

breakage upon impact, which reduces the final impact energy that the protection 

structure should be designed for (see Figure 1-1a). In other words, the system 

capacity is likely to be over-designed, which comes at a cost.  
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• The height and position of a protection structure are governed by the trajectory 

of the falling blocks. Fragments could have a very different trajectory to that of 

an intact block. In particular, there is a risk of a small fragment “flying” above a 

given protection structure.  

• The mechanism of energy distribution among fragments post fragmentation is 

unknown. If a small fragment possesses a high kinetic energy, there is a risk of 

barrier failure due to mesh perforation as per Figure 1-1b. 

 

 

Figure 1-1: (a): Fragmentary rockfall phenomenon (modified after Matas et al. (2017)). (b): Damage to a rockfall 
barrier done by a high energy rock fragment (NSW) 

 

It is hence important to deepen our understanding of rock fragmentation upon 

impact in order to optimise the design of protection structures.  

The development and calibration of adequate fragmentation models is currently 

hindered by a lack of comprehensive fragmentation tests and data. Rockfall models that claim 

to predict fragmentation are often based on inadequate assumptions, such as the idea that 

fragmentation is a threshold phenomenon, an assumption contradicted by Giacomini et al. 

(2009). 

 

1.2 Objectives of the research 
This PhD research aims to provide high quality fragmentation data in order to 

improve our fundamental knowledge on the phenomenon. More specifically, the research 

conducted aims at providing elements of answers to the following questions: 
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1. In a rockfall event, for a given geological setting, is fragmentation likely to occur?  

2. If fragmentation occurs, what is the outcome of fragmentation? This includes the 

number and distribution of fragment sizes, the partition of energy amongst 

fragments and fragment trajectories.  

Given the complexity of the problem and the large number of significant factors, this 

PhD work focuses on a detailed study of the impact of brittle spheres on a concrete slab and 

aims at:  

 Designing and assembling a specific fragmentation study apparatus. 

 Producing high-quality experimental data of brittle fragmentation of spherical 

blocks, pertaining to survival probability, fragmentation patterns, fragment size 

distribution, trajectories before and after impact and energy balance.  

 Developing and validating a model that can predict the survival probability of 

brittle spheres upon dynamic impact based on the statistical variability of block 

strength properties. 

 

1.3 Structure of the thesis 
The work presented in this thesis is organised in seven chapters, including this 

introduction (Chapter 1).  

Chapter 2 provides a review of the literature, covering impact mechanics and impact 

modelling in rockfall, elements of fracture mechanics and significant numerical and 

experimental studies on fragmentation.  

Chapter 3 presents the experimental setup designed to capture fragmentation of 

blocks upon impact. A detailed description of the developed apparatus and testing 

methodology is given.  

Chapter 4 presents the derivation of a novel model to predict the impact survival 

probability of brittle spheres upon impact from statistical distribution of material properties.  

In Chapter 5, the material used and the experimental program are presented.  

Chapter 6 then covers the main results of this research. First, the extensive material 

characterisation and the setup validation are presented. Then, attention is focused on the 

experimental outcomes of fragmentation tests and the application of the novel model to 

predict the observed impact survival provability of brittle spheres upon impact. Finally, the 
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test results are analysed in terms of energy dissipation mechanisms and the partition of energy 

between fragments.  

The thesis concludes with Chapter 7, which contains conclusions and 

recommendations for future research. 
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2 Literature review 

This chapter includes in two main sections. The first focuses on the literature review 

on impact modelling and impact mechanics in the context of rockfall. Note that, a detailed 

review of rockfall hazard and risk assessment methodologies and type of rockfall protection 

structures proposed in the scientific literature is not considered in this section as out of the 

scope of the thesis. A comprehensive reviews of these topics can be found in Peila and 

Ronco (2009), Volkwein et al. (2011), Turner and Schuster (2013), Thoeni et al. (2014), Wyllie 

(2014b), Ferrari et al. (2016), Effeindzourou et al. (2017), Corominas et al. (2019), Volkwein 

et al. (2019), just to name a few. The second section covers the principles of fracture 

mechanics and the most significant experimental and numerical studies conducted on 

fragmentation over the last few decades. 

 

2.1 Impact modelling 
Four main motion models are generally considered to characterise the fall of a block 

along a slope: free fall, bouncing, rolling, sliding, or a combination of the four motions. In 

early 60s’ Ritchie (1963) proposed to relate the type of rockfall motion to the slope angle, Ψ𝑠𝑠 

(see Figure 2-1). The steepest the slope, the higher is the tendency of the block to move from 

a rolling motion to a bounce and then free fall motion. Generally speaking, the freefall mode 

can be mostly observed on the upper part of a scarp and when the slope angle varies between 

90° and 70°. For lower angle values, the block tends to bounce or move with a combination 

of bouncing and rolling motions. At impact, a significant amount of energy is usually lost, 

partially within the impacted soil/rock layer and partially as rebound energy and/or 

fragmentation energy for the block. If the slope gradient decreases downward to about 45°, 

the motion is generally transformed into a pure rolling motion. Sliding mainly occurs at the 

initial stages of the fall or near its stopping point. 
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Figure 2-1: Relation between motion type and slope angle (modified after Ritchie (1963)) 

 

Trajectory modelling is generally used to assess rockfall hazard and to estimate the 

impact energy for design of protection measures (Volkwein et al. 2011). Existing rockfall 

trajectory simulation models can be grouped according to the trajectory’s spatial domain:  

1. Two-dimensional (2D) models simulate the rockfall trajectory along a user-defined 

slope profile in a spatial domain defined by two axes (Azzoni et al. 1995). 

2. 2.5D or quasi-3D trajectory models consider the direction of the rockfall trajectory 

in the x-y domain independent from the kinematics of the falling rock; in fact, the 

latter evolves in the vertical plane (Volkwein et al. 2011). 

3. 3D trajectory models define the trajectory in a 3D plane (x, y, z). Models in this group 

include EBOUL-LMR (Descoeudres and Zimmermann 1987), STONE (Guzzetti et 

al. 2002), Rotomap (Scioldo 2006), DDA (Yang et al. 2004), STAR3-D (Dimnet 

2002), HY-STONE (Crosta et al. 2004) and Rockyfor3-D (Dorren et al. 2004), 

RAMMS: Rockfall (Christen et al. 2007), etc. The major advantage of 3D models is 

that they consider the slope topography and therefore they allow for more realistic 

trajectories within the 3D space. Nevertheless, 3D models require spatially explicit 

parameter maps which may involve significant time-consuming activity in the field. 

A main aspect of rockfall trajectory modelling resides in the modelling of the rebound 

of the block upon impact with the slope, which can be very challenging. Two approach are 

commonly considered for this purpose: the lumped mass approach and the rigid body 

approach (Giani 1992; Hungr and Evans 1988). Lumped mass methods consider the 

interaction of the point (in which the mass of the block is concentrated) with the slope 

without accounting for the shape of the blocks (Guzzetti et al. 2002; Hoek 1987; Hungr and 

Evans 1988; Piteau and Clayton 1977; Ritchie 1963; Stevens 1998). Instead, the rigid body 
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methods use the fundamental equations of dynamics, including the rotation, to model the 

motion of the block along the slope (Azzoni et al. 1995; Cundall 1971; Descoeudres and 

Zimmermann 1987; Falcetta 1985). Other numerical tools are based on an hybrid approach 

that considers a lumped mass approach in the free fall trajectory phase and accounts for 

geometrical and mechanical characteristic of the block and the slope at impact (Azimi and 

Desvarreux 1977; Bozzolo and Pamini 1986; Crosta et al. 2004; Dorren et al. 2004; Jones et 

al. 2000; Kobayashi et al. 1990; Pfeiffer and Bowen 1989; Rochet 1987).  

Most of the existing rockfall trajectory models use coefficients of restitution (normal 

and tangential) to account for the rebound at impact with the slope surface and a friction 

coefficient to model the rolling motion. An overview of typical values considered for the 

coefficients of restitution can be found in Scioldo (2006) and the concept of the coefficient 

of restitutions is further described in Section 2.1.1. 

The rolling of a boulder along a slope can be represented by a sequence of short 

bounces and low flying parabolas. Rolling motion is usually well defined for spherical, 

cylindrical or discoid blocks for which the velocity of the boulder is low, and the boulders 

are moving on a medium to low terrain gradient with limited surface roughness. However, a 

pure rolling motion of a rock can be considered an abstraction as natural blocks do not have 

typical geometric shapes and the impacted surface is never completely flat (Azzoni et al. 

1995; Bozzolo and Pamini 1986; Dorren 2003; Giacomini et al. 2010; Guzzetti et al. 2002). 

As previously mentioned, sliding is mostly limited to the initial stage of a rockfall and the 

motion is characterised by low velocity and high loss of energy due to the frictional 

interaction with the slope surface. For large boulders, sliding may also occur at impact, with 

significant loss of energy. The distinction between rolling and sliding models is quite difficult 

since a combination of the two movements can occur very rapidly (Descoeudres 1997; Giani 

1992). 

 

2.1.1 Empirical approach: coefficient of restitution in rockfall engineering  
The accurate modelling of the rebound of a block at impact is one of the most 

difficult tasks in rockfall analyses. Several studies showed that the rebound of the block at 

impact with the slope surface is affected by both slope and block characteristics (Table 2-1). 

Numerous experimental investigations were carried out in the field (Asteriou et al. 

2012; Azzoni and De Freitas 1995; Azzoni et al. 1992; Berger and Dorren 2006; Bozzolo et 
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al. 1988; Broili 1977; Evans and Hungr 1993; Ferrari et al. 2013; Fornaro et al. 1990; 

Giacomini et al. 2009; 2010; 2012; Giani 1992; 2004; Kirkby and Statham 1975; Kobayashi 

et al. 1990; Lied 1977; Pfeiffer and Bowen 1989; Ritchie 1963; Spadari et al. 2012; Statham 

and Francis 1986; Teraoka et al. 2000; Urciuoli 1996; Wu 1985; Wyllie 2014a; Yoshida 1998) 

and in the laboratory (Ansari et al. 2015; Asteriou et al. 2012; Asteriou and Tsiambaos 2018; 

Azimi and Desvarreux 1977; Azimi et al. 1982; Bourrier 2008; Buzzi et al. 2012; 

Camponuovo 1977; Chau et al. 1998a; 1998b; 1999a; 2002; 1999b; Heidenreich 2004; Imre 

et al. 2008; Ji et al. 2019; Kamijo et al. 2000; Kawahara and Muro 1999; Masuya et al. 2001; 

Murata and Shibuya 1997; Statham 1979; Ushiro et al. 2000; Wong et al. 1999; 2000; Ye et 

al. 2019b) to investigate the mechanisms occurring during impact and to quantify the 

influence of the parameters listed in Table 2-1. 

Table 2-1 Parameters assumed to influence the bouncing phenomenon (Labiouse and Descoeudres 1999). 

Slope characteristics Rock characteristics Kinematics 

Strength 

Stiffness 

Roughness 

Inclination 

Strength 

Stiffness 

Weight 

Size 

Shape 

Velocity (translational and rotational) 

Incidence angle configuration of the rock at impact 

 

Bouncing is significantly affected by the transfer of energy between the block and 

the slope. The kinetic energy of the block at impact is converted into rebound kinetic energy, 

energy diffusion and energy dissipation into the slope. Some elastic deformation also occurs 

for the slope material, but it is generally neglected (Volkwein et al. 2011). The energy 

diffusion is related to elastic wave propagation at the impact point (Bourrier et al. 2008; Giani 

1992), while energy dissipation is mostly related to frictional (plastic) processes inside the 

slope material (Bourrier et al. 2008; Bozzolo and Pamini 1986; Giani 1992; Heidenreich 2004) 

and block and/or soil particle fragmentation (Azimi et al. 1982; Fornaro et al. 1990; Giani 

1992). The magnitude of energy dissipation is assumed to be mainly governed by the ratio 

between the block size and the size of the slope particle (Bourrier et al. 2008; Statham 1979), 

the slope characteristics (slope hardness, roughness, slope composition/material) (Ansari et 

al. 2015; Asteriou et al. 2012; Asteriou et al. 2013b; Azzoni and De Freitas 1995; Azzoni et 

al. 1992; Chau et al. 1998a; Giokari et al. 2015; Paronuzzi 2009; Wyllie 2014a) and the block 

characteristics (shape, size/mass, Schmidt hardness, etc.) and its kinematic characteristics 

(slope/impact angle, incident velocity, rotational velocity, etc.) (Ansari et al. 2015; Asteriou 
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et al. 2013a; Asteriou and Tsiambaos 2018; Buzzi et al. 2012; Chau et al. 1999a; 2002; Falcetta 

1985; Ferrari et al. 2013; Giani et al. 2004; Heidenreich 2004; Ji et al. 2019; Ushiro et al. 2000; 

Wong et al. 2000). Energy diffusion and dissipation processes are also strongly dependent 

on the kinetic energy of the block before impact, which is related to its mass 𝑚𝑚 and its impact 

velocity (𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎), i.e., 𝐸𝐸𝑘𝑘𝑟𝑟 = 1/2 ∙ 𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎
2  (Asteriou et al. 2013a; Jones et al. 2000; Pfeiffer 

and Bowen 1989; Urciuoli 1996; Ushiro et al. 2000). The dissipation of energy at impact is 

generally represented by two coefficients of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑣𝑣 and 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸 (also called, 𝑒𝑒𝑣𝑣 and 

𝑒𝑒𝐸𝐸 , 𝑘𝑘𝑣𝑣 and 𝑘𝑘𝐸𝐸 , or 𝑅𝑅𝑣𝑣 and 𝑅𝑅𝐸𝐸). 𝐶𝐶𝐶𝐶𝑅𝑅𝑣𝑣 represents the formulation in terms of velocity loss and 

𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸 is the ratio of the total kinetic energy after 𝐸𝐸𝑘𝑘𝑎𝑎 and before impact 𝐸𝐸𝑘𝑘𝑟𝑟: 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑣𝑣 =
𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

     𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸 = �
𝐸𝐸𝑘𝑘𝑎𝑎

𝐸𝐸𝑘𝑘𝑟𝑟
 (2-1) 

Two alternative parameters related to the normal and tangential velocity of the block 

after and before impact are also commonly used for this purpose, 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 and 𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇.  

 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 =  −
𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑁𝑁

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑁𝑁
= �

𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑁𝑁

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑁𝑁
�     𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇 = �

𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑇𝑇

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑇𝑇
� (2-2) 

where 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑁𝑁 and 𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑁𝑁 are the normal components which always have opposite signs and 

𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑇𝑇 and 𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑇𝑇 are the tangential components before and after the impact (Figure 2-2) 

 

Figure 2-2 Block velocities before (𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) and after impact (𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟) with normal and tangential components. 𝜃𝜃𝑖𝑖 
represents the impact angle while 𝜃𝜃𝑟𝑟 is the rebound angle (modified after Giacomini et al. (2010)). 

 

A common range of values for the coefficients of restitution is between 0.50 and 

0.85 for 𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇 and 0.20 and 0.50 for 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 respectively (Volkwein et al. 2011). Labiouse and 

Heidenreich (2009) showed that 𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇 is unaffected by the slope angle, while the lower the 
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slope angle, the lower 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 (as show Table 2-2). The authors also demonstrated the decrease 

of 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁, 𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇 and the ratio of the total energy before and after the impact with an 

increasing of the impact energy. 

Recent research conducted at the University of Newcastle (Buzzi et al. 2012; Spadari 

et al. 2012) also showed that values of 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 can be higher than 1 as a partial transfer of 

translational kinetic energy to rotational kinetic energy at impact can occur for low values of 

impact angle, 𝜃𝜃𝑖𝑖 (angle between the tangent to the block’s trajectory before impact and the 

slope surface, see Figure 2-2). More recently, these findings were confirmed by Wyllie 

(2014a). The author investigated the relationship between impact angle and normal 

coefficient of restitution for several rockfall field testing campaigns conducted in North 

America and Japan and studied the rockfall impact phenomenon according to the principles 

of impact mechanics. In particular, the study showed a strong correlation between the values 

of the normal coefficient of restitution and the impact angle (Figure 2-3) with coefficients of 

about 0.1 to 0.2 for normal impact (𝜃𝜃𝑖𝑖 = 50 - 90°) and values often greater than 1.0 for 

shallow impacts (𝜃𝜃𝑖𝑖 = 10 - 25°). 

The impulse theory has been used to account for the change of momentum of the 

block during the compression and restitution phases of the impact (Bozzolo et al. 1988; 

Descoeudres and Zimmermann 1987; Dimnet 2002; Dimnet and Fremond 2000; Frémond 

1995; Goldsmith 1960; Stronge 2000). As this aspect of the study is significantly correlated 

with the research presented in this thesis, the theory will be further discussed in Section 2.1.2.  
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Table 2-2 Factors affecting the coefficients of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 and 𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇 identified in the (modified after Labiouse 
and Heidenreich (2009)). 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸 is the ratio of the total energy before and after impact. 

 

 

Figure 2-3: Relationship between the impact angle 𝜃𝜃𝑖𝑖 and the normal coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 for the rockfall 
sites describe in Wyllie (2014a). 
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It is important to highlight that, laboratory and field tests that measure the coefficient 

of restitution (𝐶𝐶𝐶𝐶𝑅𝑅) have been typically conducted under the assumption of no 

fragmentation of the block at impact (Asteriou and Tsiambaos 2018; Giacomini et al. 2012; 

Kamijo et al. 2000). Very few studies investigating the evolution of damage and cracks at 

impact and the energy dissipation mechanisms during rock fragmentation can be found in 

the scientific literature. Studies in the fields of material science and material processing tend 

to focus on the size distribution of fragments produced (Carmona et al. 2008; Khanal et al. 

2008; Shen et al. 2017; Tomas et al. 1999; Wu et al. 2004). In the area of rock mechanics, 

several studies have investigated the effect of cumulative damage under repeated impacts on 

the rebound characteristics for normal impacts (Chau et al. 2002; Imre et al. 2008; Labous et 

al. 1997; Seifried et al. 2005; Ye et al. 2019b). In particular, Ye et al. (2019b) developed an 

experimental setup to drop spheres of marble and record the coefficient of restitution during 

multiple rebounds via an acoustic sensor. The authors showed the existence of different 

energy dissipation mechanisms related to the progressive development of macrocracks with 

increasing impact energy. Asteriou and Tsiambaos (2018) also observed a reduction of the 

normal coefficient of restitution with impacting velocity (under single impact), which can be 

explained by the existence of damage upon impact. 

As far as theoretical analysis is concerned, most of the current research on rockfall 

collisions is based on elastic–plastic theory (Heidenreich 2004). Contact constitutive models 

of elastic-perfectly plastic spheres (Brake 2012; 2015; Chang et al. 1987; Ghaednia et al. 2014; 

Jackson et al. 2010; Stronge 2000; Thornton 1997) based on Hertzian elastic contact theory 

(Hertz 1882) have established a correlation between the 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 and impact velocity (𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎). 

Viscoelastic contact theories can also be found in the literature and they have been 

successfully applied to describe the 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 values of particles for various materials (Alizadeh 

et al. 2013; Kuwabara and Kono 1987; Ye and Zeng 2017). According to Ye et al. (2019b), 

the application of viscoelastic contact theory could be considered as a valid approach to 

describe the complex velocity and size dependence of 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 at impact. 

 

2.1.2 Principles of normal impact mechanics 
The theory of impact mechanics (Goldsmith 1960; Stronge 2000), which builds on 

early work by Sir Isaac Newton (Newton 1687) and other ground breaking researchers such 

as Poisson and Hertz in the 19th century is used in several fields of science and engineering 
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to characterise impact between colliding bodies. The impacting bodies are typically made of 

different materials, possibly of unequal masses, and can be translating and/or rotating in a 

three-dimensional space. In the case of rockfall, the impact conditions involve a stationary 

slope characterised by an infinite mass and some roughness being impacted by blocks of 

irregular shape. Such conditions render the analysis of impact quite complex. 

This section explores the application of the theory of impact mechanics based on the 

work of Stronge (2000) and Wyllie (2014b) to the rockfall phenomenon. The reviews cover 

only the normal impact of a nonrotating rigid body on a rigid surface as it represents the only 

test condition explored in this study. More details on the case of a rotating body impacting a 

rough and inclined rigid surface can be found in Chapter 4 and 6 of Wyllie (2014b). 

Compared to other fields in science and engineering involving impact of projectiles 

or car crashes, it can be said that impacts in rockfall typically occur at low velocity (i.e. less 

than about 40 m/s). Also, for impacts involving rock on rock, the impact duration is relatively 

short so that the impact induces high stress concentration in relatively small areas and 

generates minor deformations. With no significant interpenetration or adhesion between 

impacting objects, the impact is qualified as a “low compliance” impact. 

In the case of a rigid body impacting a rigid surface, the impact area can be assumed 

to be equivalent to a short and stiff spring, or an infinitesimally small and deformable particle 

(Figure 2-4) (Wyllie 2014b). The impact includes a compression phase, where the particle (or 

spring) is compressed and the impacting object loses energy, followed by a restitution phase 

where the compressed particle returns the energy accumulated during the compression to 

the block, which in turn moves away from the slope. In such impact with infinitesimal 

deformation, the block position is considered constant and the weight of the block can be 

ignored, as it is much lower than the impact force. 
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Figure 2-4: Forces (𝐹𝐹) generated at the contact point during normal impact of a block with a rigid surface 

(modified after Wyllie (2014b)). 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 is the impact velocity of the block and 𝛿𝛿 represents the deformation of the 
deformable particle. 

The impacting body is characterised by its mass (𝑚𝑚) and its impact velocity (𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) 

which can be used to define the momentum of the object (𝑝𝑝 = −𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) and its kinetic 

energy before impact (𝐸𝐸𝑘𝑘𝑟𝑟 = 1/2 ∙ 𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎
2 ). Analysing the change in momentum and 

energy during the impact involves Newton’s second and third laws of motion, expressed as: 

• Second Law: the momentum of a body (p) has a rate of change with respect to a time 

that is proportional to, and in the direction of, any resultant force (F) acting on the 

body: 

 𝐹𝐹 =
𝑑𝑑𝑝𝑝
𝑑𝑑𝑡𝑡

 (2-3) 

• Third Law: two interacting bodies have forces of action and reaction that are equal in 

magnitude, opposite in direction and collinear. 

During the impact illustrated in Figure 2-4, the compressed infinitesimal particle 

generates equal and opposite impact forces (𝐹𝐹,−𝐹𝐹) parallel to the direction of movement, 

which produces a change in momentum and therefore, a change in velocity during the 

impact. Note that the mass of the rigid body can be considered constant.  

The impact intensity can be quantified in terms of impulse 𝐽𝐽(𝑡𝑡), which is related to 

the contact force 𝐹𝐹(𝑡𝑡) and the change of momentum by: 

 𝐽𝐽(𝑡𝑡) = � 𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑅𝑅

𝑅𝑅=0
= �  𝑑𝑑𝑝𝑝

𝑅𝑅

𝑅𝑅=0
= � 𝑚𝑚 𝑑𝑑𝑣𝑣

𝑅𝑅

𝑅𝑅=0
 (2-4) 
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Noting 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎,𝑁𝑁 the impact normal velocity at impact and 𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟,𝑁𝑁 the normal velocity 

when the block separates from the impacted surface at rebound, the relative normal velocity 

at any time (𝑣𝑣𝑁𝑁(𝑡𝑡)) during the impact can be obtained by integration: 

 𝑣𝑣(𝑡𝑡) = �
1
𝑚𝑚
𝑑𝑑𝐽𝐽

𝑅𝑅

𝑅𝑅=0
 (2-5) 

 𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 +
𝐽𝐽(𝑡𝑡)
𝑚𝑚

       where     𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 < 0 (2-6) 

Eq. (2-6) can be used to: 

• find the impulse at maximum compression 𝐽𝐽𝑐𝑐 at the point when the normal 

velocity is temporarily equal to zero: 

 𝐽𝐽𝑐𝑐 = −𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎       where     𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 < 0 (2-7) 

• find the total impulse 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 at the end of the impact when the body rebounds 

and separates from the surface: 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 = 𝑚𝑚�𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎�    where     𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 < 0 (2-8) 

These two values of impulse reflect the fact that normal force increases to a 

maximum value during the compression phase of the impact and then reduces during the 

restitution phase until the block separates from the impacted surface.  

The changes in the normal contact force 𝐹𝐹 during impact are illustrated in Figure 

2-5a where the force (𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅) and deformation (𝛿𝛿𝑐𝑐) are at the maximum compression phase, 

followed by partial recover (𝛿𝛿𝑓𝑓), for inelastic impact, at the end of the restitution phase. The 

compression and restitution phases are also characterised by changes of kinetic energy: some 

energy is lost during the compression phase and some energy is recovered during the 

restitution phase. 

Figure 2-5b shows the change in the normal contact force as a function of time. The 

area under the 𝑡𝑡 − 𝐹𝐹 curve up to time equal to 𝑡𝑡𝑐𝑐 is the impulse 𝐽𝐽𝑐𝑐 generated during the 

compression phase and represents the kinetic energy of relative motion that is converted into 

internal deformation. The area between times 𝑡𝑡𝑐𝑐 and ∆𝑡𝑡 is the change in impulse (𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 −

𝐽𝐽𝑐𝑐) which represents the energy recovered during the restitution phase. For perfectly elastic 

materials, the energy lost in compression is fully recovered during the restitution phase 
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(𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 = 1). In contrast, for perfectly plastic materials, the energy absorbed during the 

compression phase is not recoverable (𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 = 0). For elasto-plastic materials, the impact 

energy is partially recovered (0 < 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 < 1). 

 

Figure 2-5: Variation of force 𝐹𝐹 during impact: (a) relationship between force and deformation at the impact 
point; (b) change in force and impulse over time during impact; 𝐽𝐽𝑐𝑐 is the impulse generated up to the time of 

maximum compression (𝑡𝑡 = 𝑡𝑡𝑐𝑐); 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 − 𝐽𝐽𝑐𝑐 is the impulse generated during the restitution phase of impact (𝑡𝑡 =
𝑡𝑡𝑐𝑐 to 𝑡𝑡 = ∆𝑡𝑡𝑖𝑖). 

Using Eq. (2-2) (normal coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁) to express 𝑣𝑣𝑟𝑟𝑎𝑎𝑟𝑟 in Eq. (2-8) 

the impact impulse can be written as: 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 = 𝑚𝑚�−𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎� = −𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(1 + 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁) (2-9) 

and using Eq. (2-7) it can be further simplified to: 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 = 𝐽𝐽𝑐𝑐(1 + 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁) (2-10) 

By rearranging Eq. (2-10) the normal coefficient of restitution can be expressed as: 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 = �
𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅

𝐽𝐽𝑐𝑐
− 1� (2-11) 

It is possible to use Eq. (2-11) to calculate the net energy loss during impact as: 

 ∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅 =
1
2
𝑚𝑚 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

2�1 − 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁2� (2-12) 

For a normal impact, the coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 is at maximum equal to 1, which 

corresponds to a perfectly elastic case.  
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2.2 Fragmentation of brittle materials 
2.2.1 Elements of Fracture Mechanics 

Fracture mechanics relates to the study of stress concentration due to sharp-tipped 

flaws and the propagation of these flaws within the body. Fracture mechanics originates from 

two seminal contributions by Griffith (1920) and Irwin (1958), which recognise the role of a 

crack as a stress concentration that influences brittle fracture.  

The analysis of crack propagation in fracture mechanics has its origins in the attempts 

to understand the failure of glass, the stability of metal engineering structures in service, and, 

recently, the fracture properties of engineering ceramics. More recently, fracture mechanics 

has been also widely applied in the study of rock material behaviour and geophysics problems 

(Atkinson 1987). 

The current research intends to deepen the understanding of dynamic fragmentation 

upon impact by experimental observations. Although the intent is not to use fracture 

mechanics to predict the occurrence of fragmentation or its outcome, the state of the art of 

fracture mechanics provides a valuable framework to interpret some of the experimental 

results on intact and controlled materials (e.g. quantify the amount of energy required to 

form new fracture surfaces in an intact material). Therefore, some key aspects of fracture 

mechanics, namely fracture modes, crack propagation, fracture toughness, dynamic fracture 

strength and the prediction of fragment size and distribution upon dynamic loading are 

discussed in the following paragraphs. 

In the scientific literature, the term fracture refers to the appearance of a discontinuity 

surface called “crack”, that locally separates a solid in two different parts (Atkinson 1987). 

There are three fundamental modes of crack propagation (or displacement) named as mode-

I (Figure 2-6a), mode-II (Figure 2-6b) and mode-III (Figure 2-6c) referred as tensile, in-plane 

shear and anti-plane shear, respectively. In problems involving crack loading, the 

superposition of these three fundamental modes is sufficient to describe the most general 

case of fracture deformation and stress field (Atkinson 1987). For example, assuming a linear 

and elastic crack tip propagation and stress field on the plane 𝑧𝑧 = 0, the following condition 

occurs for each of the three modes (see Figure 2-7 and Eqs. (2-13), (2-14) and (2-15)): 

 For mode-I          𝜎𝜎𝑥𝑥 ≠ 0,   𝜎𝜎𝑥𝑥 ≠ 𝜎𝜎𝑧𝑧 ≠ 0,   𝜏𝜏𝑥𝑥𝑧𝑧 = 0 (2-13) 

 For mode-II            𝜏𝜏𝑥𝑥𝑧𝑧 ≠ 0,   𝜎𝜎𝑥𝑥 = 0 (2-14) 
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 For mode-III            𝜏𝜏𝑥𝑥𝑧𝑧 ≠ 0,   𝜎𝜎𝑥𝑥 = 0,   𝜏𝜏𝑥𝑥𝑧𝑧 ≠ 0 (2-15) 

 

 

Figure 2-6: Schematic sketches illustrating the three fundamental modes of fracture: (a) mode-I, tensile or 
opening mode; (b) mode-II, in-plane shear or sliding mode; (c) mode-III, anti-plane shear tearing mode. 

(modified after Atkinson (1987)). 

 

 

Figure 2-7: Example of the elastic stress field for fracture mode-I. Rectangular and polar reference system are 
centred at the crack front. Note that the opening of this crack is exegeted to be more visible. (modified after 

Atkinson (1987)). 

Stress intensity analysis is used to measure the real force applied to a crack tip, which 

determines whether the crack grows or remains stable. The classical linear elasticity theory 

can be applied to study the fracture behaviour of the rock material, under fracture modes I, 

II and III. The stress intensity factor (𝐾𝐾) is used to predict the stress state close to the tip of 

a crack or “notch” cursed by a remote force or residual stress (Anderson 2017). The stress 

intensity factor depends on the shape of the body, the length of the crack and it is directly 

proportional to the applied load. If a very sharp crack, or a V-notch can be made in a 

specimen with a defined geometry (Kuruppu et al. 2014), the minimum value of 𝐾𝐾𝐼𝐼, which 
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corresponds to the critical value of stress intensity required to propagate the crack, can be 

determined experimentally. This critical value determined for mode-I loading in plane strain 

is named critical fracture toughness (𝐾𝐾𝐼𝐼𝑐𝑐) of the material. 

The critical fracture toughness can be used to determine the energy loss per unit of 

new crack separation area formed during an increment of crack extension (also called “strain 

energy release rate”). In quasi-static condition, it can be calculated for each fracture mode 

using the well know Irwin’s correlation (Atkinson 1987; Zhang and Zhao 2014a): 

 𝛾𝛾𝐼𝐼 =
𝐾𝐾𝐼𝐼2(1 − 𝜈𝜈2)

𝑌𝑌
 (2-16) 

 𝛾𝛾𝐼𝐼𝐼𝐼 =
𝐾𝐾𝐼𝐼𝐼𝐼2(1 − 𝜈𝜈2)

𝑌𝑌
 (2-17) 

 𝛾𝛾𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼2 (1 + 𝜈𝜈)

𝑌𝑌
 (2-18) 

where 𝑌𝑌 is the Young modulus and 𝜈𝜈 is the Poisson ratio of the material. 

Indeed, the response of a single crack to quasi-static or impulsive loading has been 

studied over the past several decades and it is reasonably well understood. It is also known 

that material properties and fracture behaviour of rock are highly affected by loading rate, 

and in particularly if it exceeds a critical value (Atkinson 1987; Backers et al. 2003; Bažant et 

al. 1993; Cadoni 2010; Hoek and Bieniawski 1965; Kipp et al. 1980; Zhang and Zhao 2014a; 

Zhang and Zhao 2014b). Researchers have attempted to explain the effect of loading rate on 

fracture strength by the existence of inherent flaws (Curran et al. 1977) and by considering 

the dynamic response of isolated cracks (Chen and Sih 1977). These two approaches capture 

different physical features of the transient fracture process observed in the dynamic fracture 

of rock and both lead to a theoretical description of the dynamic fracture strength of rock 

(Grady and Kipp 1987). For more detail about the two approaches consult Grady and Kipp 

(1987). 

 

Prediction of fragment size and distribution in dynamic fragmentation 

The fragment (or particle) size distribution produced in a fragmentation event has 

drawn the attention of researchers in various fields of science, especially if related to 
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impulsive fracture applications. Several aspects of fragmentation, such as the resulting 

fragment distribution, are indeed significant in numerous explosive or percussive rock 

breakage applications, such as in deep drilling (Varnado and Stoller 1978), explosive or 

propellant stimulation of gas and oil wells (Warpinski et al. 1979), and mining and 

construction blasting (Langefors and Kihlström 1978). Similarly, the aspects are relevant for 

natural events such as the explosive eruption of a volcano or the catastrophic impact of a 

major meteorite (Melosh 1984; O’Keefe and Ahrens 1976) in which debris can be distributed 

through the earth’s atmosphere. 

Various approaches have been developed to predict the average fragment size and/or 

describe the fragment (or particle) size distribution. For the prediction of the average 

fragment size, both theories described in the previous section (fracture activation due to 

interaction of existence of inherent flaws or by considering the dynamic response of isolated 

cracks) have been successfully used to account for high loading rate fracture events (Costin 

and Grady 1984; Grady 1982; Grady and Benson 1983; Grady and Kipp 1980; Grady and 

Kipp 1987; Shockey et al. 1974). 

The predominantly statistical nature of fragmentation was recognised in early studies 

of the phenomenon and standard distributions such as Poisson (Bennett 1936; Lienau 1936), 

binomial (Gaudin and Meloy 1962), log normal (Kolmogorov 1941), and Weibull (Rosin and 

Rammler 1933) have been successfully used to characterise fragment size distribution over 

the last century. Theoretical geometric studies have also been conducted to assess and model 

fragment size distribution, such as the random partitioning of lines, areas or volumes into 

the most probable distribution of sizes. In a one-dimensional case, the topic has been 

discussed by several authors (Gaudin and Meloy 1962; Gilvarry 1961; Grady and Kipp 1985; 

Lienau 1936), while it has been mutually agreed that in 2 and 3 dimensional spaces, the 

solution cannot be achieved without strong assumptions on the random partitioning of areas 

close to the boundaries. Therefore, the applicability of any geometrical statistical 

fragmentation model is not straight forward. In addition, statistical approaches ignore the 

dynamics of the fragmentation event like growing, propagating, interacting cracks and 

fractures or energy consuming, which strongly influence the fragment size statistics. Some 

of the main statistical distributions considered in the literature for the modelling of the 

fragment size distribution resulting from catastrophic fracture events (i.e. explosion) are 

discussed next. 
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Theories on the prediction of the fragments size distribution have been proposed 

since the early 1930s’ and started with the fundamental hypothesis of a randomly cracked 

body (Figure 2-8). Concepts of Poisson statistics have been pivotal to the works proposed 

by Bennett (1936), Lienau (1936) Gilvarry (1961) and Mott and Linfoot (1943). 

 

Figure 2-8: Poisson process - Random one-dimensional fragmentation (modified after Grady and Kipp (1987)). 

 

Considering an infinite one-dimension line or bar along which random fractures 

occuring with an average rate 𝑁𝑁0 fractures per unit length (as illustrated in Figure 2-8), the 

propability of finding 𝑛𝑛 fractures within the length 𝑙𝑙, 𝑆𝑆(𝑛𝑛, 𝑙𝑙), is given by: 

 𝑆𝑆(𝑛𝑛, 𝑙𝑙) =
(𝑁𝑁0𝑙𝑙)𝑛𝑛𝑒𝑒−𝑁𝑁0𝑓𝑓

𝑛𝑛!
 (2-19) 

The most probable distribution in fragment size is found by observing that the 

probability of finding no fractures whithin a length 𝑙𝑙 is: 

 𝑆𝑆(0, 𝑙𝑙) = 𝑒𝑒−𝑁𝑁0𝑓𝑓 (2-20) 

while the probability of finding one fracture within a length, 𝑑𝑑𝑙𝑙 is: 

 𝑆𝑆(1,𝑑𝑑𝑙𝑙) = 𝑁𝑁0 𝑑𝑑𝑙𝑙 (2-21) 

Thus the probability of finding a fragment of length 𝑙𝑙 within a tolerance of the increment 𝑑𝑑𝑙𝑙 

can be written as: 

 𝑑𝑑𝑆𝑆(𝑑𝑑𝑙𝑙) = 𝑆𝑆(0, 𝑙𝑙)𝑆𝑆(1,𝑑𝑑𝑙𝑙) = 𝑁𝑁0 𝑒𝑒−𝑁𝑁0𝑓𝑓 𝑑𝑑𝑙𝑙 (2-22) 

Integration of Equation (2-22) leads to: 

 𝑁𝑁(𝑙𝑙) = 𝑁𝑁0 𝑒𝑒−𝑁𝑁0𝑓𝑓 (2-23) 
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A major difficulty to extend the one-dimensional problem to the two-dimensional 

geometric fragmentation of an infinite sheet, resides in the randomly partition of the area.  

Mott and Linfoot (1943) proposed a linear nominal measure of the fragment size, 

proportional to the fragment area, 𝑎𝑎. The authors proposed a cumulative fragment number 

distribution: 

 𝑁𝑁(𝑎𝑎) = 𝑁𝑁0 𝑒𝑒−�2𝑁𝑁0𝑎𝑎 (2-24) 

where 𝑁𝑁0 is the number of fragments per unit area. This distribution was particularly 

successful to describe fragmentation during rapid experiments conducted on spherical and 

cylindrical shells. However, the method may be hardly applicable for dynamic fragmentation 

of rocks, as shown by experimental observations (Grady and Kipp 1985; Grady and Kipp 

1987). Alternatively, Grady and Kipp (1985) suggested using a scalar measure of the fragment 

area, 𝑎𝑎, as a Poisson variable to represent dynamic fragmentation data: 

 𝑁𝑁(𝑎𝑎) = 𝑁𝑁0 𝑒𝑒−𝑁𝑁0𝑎𝑎 (2-25) 

This “linear exponential” distribution was successfully used to represent dynamic 

experimental fragmentation data (Grady and Kipp 1985), and it was also expressed in terms 

of volume, 𝑉𝑉, as per Eq. (2-25): 

 𝑁𝑁(𝑉𝑉) = 𝑁𝑁0 𝑒𝑒−𝑁𝑁0𝑉𝑉 (2-26) 

Another classical statistical formulation commonly used to describe the fragment size 

distribution is the Weibull distribution. The latter considers a flexible two-parameter 

analytical formula and it has been used in several engineering applications involving 

fragmentation and to describe fragmentation data (Rosin and Rammler, 1933, Grady and 

Kipp, 1987). Bennett (1936), Gilvarry (1961) and Kuznetsov and Faddeenkov (1975) put 

significant efforts to provide a reliable theoretical framework for the application of the 

Weibull description to fragmentation. However, the valid applicability of the distribution for 

fragmentation purposes has yet to be demonstrated, as theoretical issues related to 

divergence from fragment number and fragment surface area at the end of the distribution 

have been observed for such applications. 

According to the Weibull representation of fragmentation, the cumulative 

distribution of fragment mass fraction (or volume fraction) finer than size 𝑥𝑥, is: 
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𝑚𝑚(< 𝑥𝑥)
𝑚𝑚𝑅𝑅𝑡𝑡𝑅𝑅

= 1 − 𝑒𝑒�−
𝑥𝑥

𝑖𝑖𝑐𝑐𝑐𝑐
�
𝜇𝜇

 (2-27) 

where 𝑚𝑚(< 𝑥𝑥) is the cumulative mass of fragments less than 𝑥𝑥, 𝑚𝑚𝑅𝑅𝑡𝑡𝑅𝑅 is the total mass of 

fragments and 𝑚𝑚𝑐𝑐𝑟𝑟 is related to a characteristic particle mass (or scale parameter) and 𝜇𝜇 is a 

Weibull shape parameter. 

Grady and Kipp (1987) suggested that the shape parameter should range from about 

0.5 to 6 as a function of the type or method of fragmentation. A theoretical upper limit of 𝜇𝜇 

equal to 6 was suggested by Grady and Kipp (1985). Mock and Holt (1983) and Weimer and 

Rogers (1979) showed values of 𝜇𝜇 for a large body of fragmenting munitions ranging between 

4 and 6, while direct impact fragmentation experiments showed a range between 2 and 3 

(Shockey et al. 1974). In split Hopkinson pressure bar tests the shape parameter varies from 

about 1.2 to 1.8 (Costin and Grady 1984; Grady 1981). More diverse cases of fragmentation 

data, such as for ball milling comminution of mineral (Rosin and Rammler 1933), or 

explosive crushing experiments on glass spheres (Bergstrom et al. 1962), have shown 

distributions of 𝜇𝜇 close or equal to 1. 

To summarise this section, studies conducted over the last century show that the 

energy consumed to create fractures can be estimated by knowing the fracture toughness of 

the material (estimated from standard toughness tests). However, the fracture behaviour of 

rock materials is significantly influenced by loading rate and is strongly correlated to the 

presence of imperfections or flaws. Various statistical distributions have been used in the 

literature for the modelling of the fragment size distribution resulting from catastrophic 

fracture events and an overview of the most well know statistical distributions and 

approaches has been provided as background for the research work presented here. 

 

2.2.2 Experimental studies on fragmentation upon impact 
The experimental study of breakage of rocks or particles of brittle materials is a 

challenging research field. The intrinsic shape variability of a natural rock represents one of 

the most important aspects to account for when designing and performing experimental 

investigations. However, it also brings an additional level of complexity to the problem.  To 

simplify, spheres or discs have been generally used in comminution research to study the 

breakage by compression or impact, and theoretical solutions for linear elastic behaviour 
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have been proposed to calculate the stress field developed upon breakage (Schönert 2004). 

The following sections provide further insights into the most recent experimental studies on 

brittle material conducted to investigate the static and dynamic response of spherical samples 

and intend to provide a useful background for the experimental work presented in this thesis. 

 

2.2.2.1 Quasi static loading 

The compression of spheres, either statically or dynamically, between two flat rigid 

platens, is one of the most popular experimental tests (Chau et al. 2000). In quasi-static 

conditions, crushing of spheres between two flat platens has been used to assess the 

deformability of elastic materials, the hardness of ductile materials and crushing strength of 

brittle materials. The test is also used to estimate the tensile strength of brittle spheres 

(Hiramatsu and Oka 1966; Jaeger 1967; Wynnyckyj 1985; Yoshikawa and Sata 1960). The 

static compression of spheres between two flat rigid platens has been applied to test the 

performances of various materials such as glass (Arbiter et al. 1969; Bergstrom and 

Sollenberger 1961; Bergstrom et al. 1962; Cheong et al. 2003; Gilvarry and Bergstrom 1961a; 

1961b; Gorham et al. 2003; Kschinka et al. 1986; Schönert 2004; Shipway and Hutchings 

1993c) ceramics (Wong et al. 1987), granulates (Antonyuk et al. 2005), sand concrete (Arbiter 

et al. 1969; Khanal et al. 2008), plaster (Chau et al. 2000; Wu et al. 2004), quartz sand (Breval 

et al. 1987), agglomerates (Meyers and Meyers 1983; Schubert 1975; Shinohara and Capes 

1979; Wynnyckyj 1985), minerals, coals (Sikong et al. 1990), and rocks (Jaeger 1967; 

Santurbano 1994). A rather comprehensive review on the compression test of spheres is 

given by Darvell (1990). 

 

Stress field and fragmentation pattern 

The breakage of spheres (or particles) under compression has been explained by 

taking into consideration the pressure distribution and stress field developed upon loading 

(Antonyuk et al. 2005; Schönert 2004; Wu and Chau 2006). Analytical solutions have been 

proposed to describe the phenomenon: Hertz (1882) derived the ellipsoidal pressure 

distribution in a sphere during its contact deformation; Huber (1904) presented the stress 

field inside an infinite elastic half-space; Lurje (1963) calculated the spatial stress distribution 

in the whole sphere. One of the most popular model was proposed by Hiramatsu and Oka 

(1966) which obtained an analytical solution for isotropic spheres under diametral point load. 
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Similar solutions can also be found in Sternberg and Rosenthal (1952) and Dean et al. (1952). 

The solution by Hiramatsu and Oka (1966) was further extended by Wei and Chau (1998), 

Chau and Wei (1999) and Chau et al. (2000). 

The typical failure pattern observed for spheres (or particles) under static 

compression shows two cones close to the contact points, which determine the splitting of 

the sphere (due to tensile stress) along one or more meridian fracture planes. In other words, 

spheres tend to split in two or three slices (like the shape of orange slices) with two conical 

fragments detaching from the contact zone (Figure 2-9). This fragmentation pattern was 

observed by Arbiter et al. (1969), Chau et al. (2000), Antonyuk et al. (2005), Gorham et al. 

(2003), Schönert (2004), Wu et al. (2004), Khanal et al. (2008) and Russell et al. (2015). 

 
Figure 2-9: Typical failure mode of Plaster spheres under quasi-static compression for three diameters (50, 60 

and 75 mm) observed by Wu et al. (2004). The Roman numeral indicates the failure mode: II indicates two slices, 
IIIa three unequal slices and IIIb three equal slices. 
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Survival probability and size effect 

It is commonly recognised that for a given set of tests conducted on a series of 

samples (e.g. grains, spheres or particles) made of the same material, the stress measured at 

failure shows some variability between specimens. Even for homogeneous and identical 

samples, the material strength can be affected by differences in microstructure, distribution 

and orientation of granular bonds, defects, and pores size distribution. The survival 

probability (𝐼𝐼𝑆𝑆) of a sphere subjected to compressive stress loading is commonly described 

by a Weibull distribution (Frossard et al. 2012; Huang et al. 2014a; McDowell and Amon 

2000; Nakata et al. 1999; Wang et al. 2015; Weibull 1951): 

 
𝐼𝐼𝑆𝑆(𝜎𝜎) = 100 ∙ 𝑒𝑒−�

𝜎𝜎
𝜎𝜎𝑐𝑐𝑐𝑐

�
𝜇𝜇

 (2-28) 

where 𝜎𝜎 is the stress applied to the spheres; 𝐼𝐼𝑆𝑆(𝜎𝜎) is the survival probability of the spheres 

under stress 𝜎𝜎; 𝜇𝜇 is the distribution shape parameter corresponding to the slope of the central 

part of the Weibull distribution; and 𝜎𝜎𝑐𝑐𝑟𝑟  is the scale parameter, also called critical value of 𝜎𝜎, 

corresponding to a survival probability equal to 1/𝑒𝑒 ~ 37%. An example of survival 

probability with different Weibull shape parameters is given in Figure 2-10. Note that this 

formula can be also expressed in term of force or energy required to break the sample. 

 

Figure 2-10: Example Weibull distribution with different Weibull shape parameter 𝜇𝜇. 
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One of the most important aspects to consider in the study of quasi-static 

compression of spheres, is the size effect. This latter can generally be described as the 

dependence of a material intrinsic property on a characteristic sample dimension (e.g. volume 

or diameter).  The size effect for the compression of spheres can be expressed by the 

statistical decrease of the intrinsic strength of a sample with its increase in size (Bažant and 

Planas 1997). Relevant experimental studies on the investigation of the size effect on 

breakage of grains or particles have been conducted by Yashima et al. (1987), Nakata et al. 

(1999), McDowell and Amon (2000), Antonyuk et al. (2005), Frossard et al. (2012), Ovalle 

et al. (2014), Huang et al. (2014a) and Wang et al. (2015) to name a few. 

 

2.2.2.2 Dynamic loading 

Considerable effort has been devoted to the study of the failure of a single sphere of 

rock caused by compressive forces, and several laboratory techniques have also been 

developed to investigate the phenomenon. Beside the quasi-static loading compression 

method (see Section 2.2.2.1), experimental testing of rock spheres under dynamic loading 

conditions is generally conducted by single impact or double impact (see Figure 2-11). 

Dynamic impact tests have been carried out on spheres of various materials such as steel 

(e.g. Knight et al., 1977), granite (Kawakami et al. 1990), sand-cement (Arbiter et al. 1969; 

Khanal et al. 2008; Tomas et al. 1999), soda-lime glass (Salman and Gorham 1997), ceramics 

(Andrews and Kim 1998), soils (Hadas and Wolf 1984; Newitt and Conwya-Jones 1958), 

glass (Andrews and Kim 1999; Cheong et al. 2003; Gorham and Salman 2005; Gorham et al. 

2003) and limestone (Kapur and Fuerstenau 1967).  

 

Figure 2-11: Schematics of sphere breakage tests: (a) slow compression test; (b) single impact test; (c) double 
impact test. 
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In the single impact test, a sphere (or particle) is dropped in free fall or is launched 

by compressed air with a certain velocity to impact on a hard surface. Single impact tests can 

generally be conducted in a range of loading rate between 100 and 104 s-1. In the double 

impact test, such as drop weight test or pendulum test, the sphere is crashed by another 

object or by a flat surface (called drop-shatter test by Hadas and Wolf (1984)). Within these 

types of test, the multi-impact of the sample cannot be avoided (Huang et al. 2014b) and a 

loading rate of 104 s-1 is usually considered. The split Hopkinson pressure bar (SHPB) (Figure 

2-12) falls within the category of double impact testing procedures and has been widely used 

for rock testing under dynamic conditions. The sample is sandwiched between two bars 

called transmission bar and incident bar. At the end of the incident bar, a stress wave is 

created by a sticker bar which propagates through the incident bar toward the specimen and 

the transmission bar. This wave is referred as incident or compression wave. A portion of 

this wave is reflected back into the incident bar as a tension pulse called reflected wave. Strain 

gauges are usually located at midpoints of the incident and transmission bar to record the 

stress pulse. The technique allows to conduct tests with loading rates between 104 and 106s-1 

and calculating the energy through the strain gauges located on the bars (Huang et al. 2014b; 

Zhang and Zhao 2014b). Table 2-3 reports a summary of dynamic loading techniques and 

associated loading rates. 

 

Figure 2-12 Schematic representation of a split Hopkinson pressure bar (SHPB). 

 

Table 2-3 Classification of dynamic loading techniques to simulate the dynamic response of rock (adapted from 
Zhang and Zhao (2014a)) 

Loading rate (s-1) 
Intermediate 

        101 – 103                         104                   

Hight 

         104 – 106                      104 - 108                 

Double impact 
Pneumatic – 

hydraulic machine 

Drop weight 

machines 

Split Hopkinson 

pressure bar 

Plate impact 

technique 

Single impact 
Drop test  

 Air compressed gun  
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Rockfall impacts typically occur for impact velocities less than about 40 m/s (Wyllie 

2014b) which corresponds to a maximum loading rate of 104. As for Table 2-3, this condition 

falls into the range of intermediate loading rate. Therefore, relevant studies conducted within 

this loading rate only are presented in the following sub-sections. 

 

Stress field and fragmentation pattern 

Theoretical and experimental studies of the failure of spheres under single impact 

have been conducted by Arbiter et al. (1969), Dean et al. (1952), Gan-Mor and Galili (1987), 

Shipway and Hutchings (1993b) and Schönert (2004). While Arbiter et al. (1969), Schönert 

(2004) and Wu and Chau (2006) investigated the behaviour under double impact.  

Quasi-static loading and low velocity dynamic loading (in either compression or 

single impact) induce similar stress field, fracture pattern and shape of fragments produced 

at impact (Arbiter et al. 1969; Schönert 2004). However, it is generally recognised that 

dynamic tests require a higher energy to break a sphere compared to quasi-static condition. 

Chau et al. (2000) suggested an empirical correlation between the energy required to break a 

sphere under static compression and under double impact load, as:  

 𝐸𝐸𝑘𝑘 = 1.5 ∙ 𝑊𝑊𝑆𝑆𝐿𝐿  (2-29) 

where 𝐸𝐸𝑘𝑘 and 𝑊𝑊𝑆𝑆𝐿𝐿  are the impact energy and the static compression energy required to break 

the sphere. A few years later, Wu and Chau (2006) proposed a new analytical solution for an 

elastic sphere under a double impact load that accounts for two auxiliary problems: a static 

solution of the applied loading (solved by using the Hiramatsu and Oka (1966) model), and 

the free vibration of the sphere subjected to an initial deformed shape induced by the applied 

load (using a Heaviside step function of time along the diameter). The solution was compared 

with experimental observations and it proofed to be a valuable tool to explain the fracture 

initiation and the fracture pattern observed in the crushing of brittle spheres or particles 

under double impact. 

Schönert (2004) conducted experimental and theoretical investigations on the 

dynamic impact of spheres of Polymethylmethacrylate (PMMA) and glass. The authors 

showed a strong correlation between stress distribution and deformation within the contact 

area. In particular, he observed maximum tensile stresses around the meridional plane, 

https://www.cospheric.com/PMMA_microspheres_beads_powders.htm
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determined by the pure elastic deformation of the spheres, and a non-symmetrical stress field 

with respect to the equatorial plane because of the development of cracks. A fairly big cone-

shaped fragment is therefore created at the top of the sphere. The high stress concentration 

at contact, caused by the inelastic deformation, produces a stress distribution perpendicular 

to the meridional planes and enhances the split of the sphere in orange slice shaped 

fragments. The author concluded that the combination of elastic and inelastic deformations 

can determine the coexistence of two different fracture patterns, whose likelihood increases 

for increasing impact energies. The Hertz/Huber equations, combined with the Lurje 

solution for a sphere lying on a plate, were considered to describe the stress field and the 

breakage of the bottom part of the impacting sphere in elastic conditions. According to 

Schönert (2004), these considerations can be transferred to irregularly shaped particles. The 

fragmentation pattern, however, is expected to account for different fragment geometries.  

Figure 2-13 shows some of the fragmentation patterns observed during the double 

(Figure 2-13a, b and c) and single impact (Figure 2-13d, e and f) tests. Figure 2-13a shows 

two cones close to the contact points, which trigger the splitting of the sphere in tensile mode 

along one or more meridian fracture planes. With increasing impact energy, secondary cracks 

begin to appear (see Figure 2-13b) up to a certain level from where several small fragments 

are observed. This severe fragmentation is also known as crushing (Figure 2-13c) (Chau et 

al. 2000; Schönert 2004; Wu and Chau 2006; Wu et al. 2004). In the single impact case, the 

fragmentation pattern is similar, but the top cone is not always present at low impact energies, 

due to the absence of impact force on the top of the sphere. However, as observed by Arbiter 

et al. (1969), Shipway and Hutchings (1993a), Tomas et al. (1999), Gorham et al. (2003), 

Salman et al. (2004), Schönert (2004) and Gorham and Salman (2005) a remaining cone can 

appear at the top of the sphere due to diversions of cracks as the impact energy increases 

(Figure 2-13d, e and f). 
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Figure 2-13: Schematic of the main form of failure for double (a, b and c) and single impact test (d, e and f): (a) 

double cone with meridional cracks; (b) double cone with meridional cracks and secondary cracks; (c) cross 
section of crushed sphere (Wu et al. 2004). (d) Single cone with meridional crack; (e) single cone with oblique 

fractures forming a remaining (top) cone (Gorham et al. 2003). (f) Single cone with meridian, secondary cracks 
and remaining (top) cone (Tomas et al. 1999). 

 

Survival probability and parameters influencing the fragmentation occurrence 

As mentioned in Chapter 1, the survival probability of spheres upon impact is of 

particular interest within the scope of the current research. The concept of survival probably 

of breakage of spheres described for quasi-static conditions can also be considered for 

dynamic impacts. In the case of single impact tests, due to the variability of the material, the 

failure of spherical samples is generally observed considering a range of impact velocities 

rather that a unique value of impact velocity required to break the sphere. Recent works 

proposed by Salman and co-workers on breakage of particles of aluminium oxide (Salman et 

al. 2002), glass (Cheong et al. 2003) and fertilizer granules (Maxim et al. 2006) are of particular 

interest in this regard. 

Salman and co-workers used a compressed air gun to investigate the effect of impact 

velocity, impact angle, particle size, target material and target thickness on the fragmentation 

of small spheres (Cheong et al. 2003; Salman et al. 2002). A two-parameter cumulative 
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Weibull distribution was used to describe the relationship between the impact velocity and 

the number of unbroken particles as: 

 

𝑁𝑁0 = 100 ∙ 𝑒𝑒
−�

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖
𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐 �

𝜇𝜇

 
(2-30) 

where 𝑁𝑁0 is the number of unbroken particles, 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 is the impact velocity, 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎
𝑐𝑐𝑟𝑟  is the 

Weibull scale parameter (also called critical velocity) and 𝜇𝜇 is the Weibull shape parameter. 

The study showed how every parameter (velocity, impact angle, target material) affect 

the fragmentation occurrence. In particular, the survival probability of the particles decreases 

with the increase of impact velocity, impact angle, target thickness, target hardness and 

particle size. 

The only attempt that can be found in the scientific literature to predict the dynamic 

survival probability of granules based on quasi-static compression tests, was conducted by 

Maxim et al. (2006). The authors proposed a model in which the maximum force expected 

during impact is assumed to be equal to the one experimentally measured during the quasi-

static compression of the particle. The force is used to predict the critical velocity for Eq. 

(2-30). Note that no attempt to predict the Weibull shape parameter was made in Maxim’s 

model, therefore, the experimental value estimated from the impact tests is used in the model. 

The results did not account for static or dynamic loading rates. Therefore, the predicted 

critical velocity was underestimated by a relative error higher than 20%. 

 

2.2.2.3 In situ surveys 

In situ testing has been widely performed to investigate the rockfall phenomenon 

and calibrate rockfall models parameters (Bourrier et al. 2009; Chau et al. 2002; Dewez et al. 

2010; Dorren et al. 2006; Giacomini et al. 2009; Giacomini et al. 2010; Gili et al. 2016; 

Labiouse and Heidenreich 2009; Ritchie 1963; Spadari et al. 2012; Volkwein and Klette 2014). 

Nevertheless, only two of the cited studies focus on the experimental analysis of 

fragmentation in the context of rockfall: Giacomini et al. (2009) and Gili et al. (2016). 

Giacomini et al. (2009) studied rock fragmentation in the context of the design of 

protection barriers. Two series of drop tests were performed in a quarry in Italy using granite 

rocks. Two high speed cameras were used to capture the impacts. The images were used to 
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estimate the velocities of the blocks (before impact) and of the fragments upon impact (after 

impact). The study investigated the orientation of the rock discontinuities with respect to the 

impacted surface (measured from image analysis). The results showed that the angle between 

the discontinuities and the impacting surface (or impact angle) can significantly influence the 

outcome of the fragmentation (i.e. the number of fragments after impact). In addition, 

Giacomini et al. (2009) highlighted the complexity of defining a rockfall impact energy 

thresholds leading to fragmentation, as proposed by Fornaro et al. (1990), showing that the 

phenomenon should take into account material parameters and impact conditions affecting 

the potential fragmentation. An energy balance analysis was conducted for each test 

accounting for: (1) kinetic energy (𝐸𝐸𝑘𝑘) (before and after impact) measured thought image 

analysis, (2) deformation energy (∆𝐸𝐸𝑑𝑑), assumed by using the coefficient of restitution 

(𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁) and (3) fragmentation energy (∆𝐸𝐸𝑓𝑓𝑟𝑟). The latter was expressed as: 

 ∆𝐸𝐸𝑓𝑓𝑟𝑟 = 𝐸𝐸𝑘𝑘𝑟𝑟 ∙ 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁2 − 𝐸𝐸𝑘𝑘𝑎𝑎 (2-31) 

where 𝐸𝐸𝑘𝑘𝑟𝑟 is the kinetic energy just before impact; 𝐶𝐶𝐶𝐶𝑅𝑅𝑁𝑁 is the normal coefficient of 

restitution; 𝐸𝐸𝑘𝑘𝑎𝑎 is the kinetic energy after impact, defined as 𝐸𝐸𝑘𝑘𝑎𝑎 = 1
2

 ∑ 𝑚𝑚𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖 , where 𝑚𝑚𝑖𝑖 is 

the mass of a fragment and 𝑣𝑣𝑖𝑖 is its velocity. The results showed that the amount of 

fragmentation energy dissipated in fragmentation was a constant ratio on the kinetic energy 

before impact. 

More recently, Gili et al. (2016) conducted a series of full scale rockfall tests in a 

quarry in Spain to investigate the rockfall fragmentation. Several slope profiles and initial 

falling heights were used to drop 53 rock blocks. The trajectory and the velocity of the blocks 

were tracked by three high-speed video cameras. An aerial photogrammetric campaign was 

also used to capture the full scene, including block and fragments trajectory. Similarly to 

Giacomini et al. 2009, the investigation did not clearly indicate an energy threshold (Fornaro 

et al. 1990), but showed a correlation between the number of blocks generated at breakage 

and the fractal dimension of the initial volumetric distribution (Ruiz-Carulla et al. 2020; Ruiz-

Carulla et al. 2017). 
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2.2.3 Numerical studies on fragmentation upon impact 
Over the last few decades, advanced numerical tools have also been used to 

investigate the fragmentation phenomenon. Numerical models are a valid alternative to 

difficult, time-consuming and expensive experimental research. The numerical study of the 

rockfall fragmentation is beyond the objectives of this research, however, given the 

significance of the recent numerical findings and their correlation with experimental results 

presented in the scientific literature, some of the main works conducted on the topic are 

hereby included. 

Several authors numerically investigated the rockfall impact and the fragmentation 

mechanism by means of advanced discrete element modelling (Behera et al. 2005; Liu et al. 

2010; Moreno et al. 2003; Paluszny et al. 2016; Reddish et al. 2005; Sator and Hietala 2010; 

Thornton et al. 1996; Wang and Tonon 2011; Wittel et al. 2008; Ye et al. 2019a; Zhao et al. 

2017). Three dimensional studies resulted more realistic and highlighted the inner limitations 

of modelling the fragmentation process in a bi-dimensional plane (2D modelling), especially 

in capturing the formation of meridional cracks that determine the primary breakage 

mechanism. 

Of particular interest is the work conducted by Wang and Tonon (2011). The authors 

investigated the mechanism of rock fragmentation upon impact, considering the effect of 

impact velocity, ground conditions and fracture proprieties. The block was modelled as an 

agglomerate of spherical particles impacting on top of a horizontal rigid plane. Taking into 

account the physical process of rockfall impact fragmentation consisting of impact-induced 

stress waves that propagate and create plastic zones, the ground was assumed as a half-space 

elastic homogenous medium. The classical 3D discrete element method (DEM) was used in 

the simulations. The study showed that the number of fragments increases with the impact 

velocity, the incidence angle (defined as the acute angle between the ground and the incident 

trajectory) and the ground stiffness. At an equal incidence angle, higher impact velocity 

generates higher impact stresses, increasing the possibility of fragmentation at impact. 

Instead, for a given impact velocity, a smaller incidence angle reduces the occurrence of 

fragmentation while producing greater angular momentum in the rock. The numerical study 

also showed that a variation of the incidence angle can affect the fragmentation for a given 

impact velocity. The normal component of the impact velocity with respect to the ground 

surface mainly governs the impact stresses and, hence a higher impact angle produces more 

fragmentation. Additionally, it was observed that a softer ground tends to extend the duration 
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of the impact and to produce lower impact stresses with consequent less probable 

fragmentation at impact. 

Wittel et al. (2008) and Paluszny et al. (2016) also used a 3D DEM to numerically 

reproduce the experimental results of brittle fragmentation of spheres. In their simulations a 

quite realistic representation of the fragmentation processes and the evolution of the 

fragmentation mechanisms, such as fragment shape and mass distribution (which was fitted 

with a two parameter Weibull distribution), was obtained. However, many factors that can 

affect the fragmentation, such as the presence of discontinuities, material heterogeneities, 

size effect and impact conditions were ignored. 

Lisjak et al. (2010) proposed a hybrid finite-discrete element approach (FEM/DEM) 

to model rockfall fragmentation. In situ tests and material data (Giacomini et al. 2010) were 

considered to calibrate the model and account for rock deformability, damage and 

fragmentation. The model was applied to a case study of rockfall with fracturing along the 

slope. Results showed the capability of the tool to efficiently reproduce field observations 

for blocks breaking and fragments accumulating along the slope upon breakage. The model 

was applied to 2D only, and no further investigations in the three-dimensional space and 

accounting for materials variability were conducted. 

Liu et al. (2010) investigate the breakage of agglomerates of different shape 

(spherical, cuboidal and cylindrical) impacting with a target wall using DEM. The results 

showed that cuboidal edge, cylindrical rim, and cuboidal corner impacts generate less damage 

than spherical agglomerate impacts. On the other hand, impact on cuboidal face, cylindrical 

side, and cylindrical end results into several fragments.  

More recently, Ye et al. (2019a) used a 3D clumped particle method to investigate 

the fragmentation process of marble spheres upon impact. The authors proposed a new 

calibration procedure to take into account for both the quasi-static and the dynamic 

behaviour of the material. They successfully recreated the evolution of fragmentation pattern 

as a function of the impact velocity observed in the laboratory (Ye et al. 2019b). The fragment 

size distribution based on mass and number was fitted using a generalised extreme value law. 

The numerical predictions of fragmentation showed that the translational velocities of some 

small fragments can be significantly higher than the impact velocity due to the instant high-

tensile stress wave occurring near the contact area. The results also suggested that there is no 

correlation between the mass of a fragment and its kinetic energy. 
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2.2.4 Modelling of fragmentation in rockfall engineering 
To the author’s knowledge, the first model accounting for fragmentation in rockfall 

engineering was proposed by Wang (2009). It consists of an impact fragmentation module 

which was integrated into the 3D rockfall code HY-STONE (Crosta et al. 2004). The module 

allowed performing rockfall simulation analysis by taking into account the fragmentation of 

a rock block upon impact and its flying fragments. The impact fragmentation model uses 

either an interpolation method or a neural network model based on an extensive DEM 

simulation database to predict the fragmentation process. The model was calibrated and 

validated by using both quasi-static and dynamic material behaviour obtained by laboratory 

tests. Several case studies were presented, and it was demonstrated that the developed 

fragmentation module can reasonably well predict impact fragmentation to perform risk 

analysis in rockfall analysis. However, the model was not able to reproduce the fragment size 

distribution observed in real cases. In addition, it was assumed that the velocity of the 

fragments can be calculated based on coefficients of restitution as no experimental data was 

available. 

In recent years, Corominas and co-workers significantly contributed to the modelling 

of fragmentation in rockfall engineering. In particular, the research team proposed a 

“Rockfall Fractal Fragmentation Method” (RFFM) (Ruiz-Carulla and Corominas 2020; Ruiz-

Carulla et al. 2020; Ruiz-Carulla et al. 2017) to obtain the rockfall block size distribution 

(RBSD) from in situ block size distribution (IBSD) and a GIS-based software, called 

RockGIS, to stochastically simulate the fragmentation of rockfall (Matas 2020; Matas et al. 

2020; Matas et al. 2017). 

Ruiz-Carulla et al. (2017) proposed different possible configurations to characterise 

the fragmentation of a block within a rockfall event to understand the predominant 

mechanism as disaggregation, pure breakage or both (Figure 2-14). If the initial detached 

mass is represented by a single block, it can remain intact (Figure 2-14a) or undergo breakage 

when the impact energy reaches a set energy threshold (Figure 2-14b). Alternately, if the 

initial block mass has major or minor structures (such as set of joints) that determine the size 

of further fragments at impact, the range of volume of the fragments can be characterised 

by the In Situ Size Distribution (IBSD). For low values of impact energy, the rock mass can 

simply disaggregate because of pre-existing planes of weakness (such as joints), generating a 

rockfall block size distribution (RBSD) similar to the original IBSD (Figure 2-14c), or a 

combination of breakage and disaggregation can occur (Figure 2-14b). The proposed RFFM 
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aims to express the abovementioned scenarios (Ruiz-Carulla et al. 2017) and it is based on 

the generic fractal fragmentation model of Perfect (1997). Three parameters are used in the 

model:  

1. the probability of failure, which indicate the degree of breakage of the instable 

identified block; 

2. the survival rate, which expresses the percentage of blocks in a rock mass that will 

survive at impact (i.e. remaining intact); 

3. the scaling factor b, which expresses the size ratio between the block and its 

fragments. 

The procedure can be iterated in hierarchies. Subsequent iterations result in a 

progressively smaller fragment size. The fragmentation is assumed scale invariant, even 

though the analysis can also be conducted as scale variant. A survival rate equal to 1 

reproduces the only disaggregation of the IBSD, hence the RBSD is equal to the IBSD. The 

model has been recently updated (Ruiz-Carulla and Corominas 2020) to meet the mass 

balance, and to generate both a continuous decreasing and scale variant distribution of 

fragment volumes. 

 

Figure 2-14: Scheme of mechanisms of fragmentation of falling rock blocks and rock masses considered by Ruiz-
Carulla et al. (2017). Considered mechanisms in the. Conceptual schemes of changes in the block size distribution in 
the case of fragmentation by (a) lack of breakage of a single block, (b) breakage of a single block, (c) disaggregation 

of the rock mass through the pre-existing joints and (d) Disaggregation and breakage of the detached rock mass. 
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The code RockGIS (Matas et al. 2017) simulates the propagation of the blocks using 

a lumped mass approach in the space defined by a Digital Elevation Model and performs the 

rebound calculations using restitution factors according to the slope material. The 

fragmentation is triggered by the disaggregation of the detached rock mass through the pre-

existing discontinuities just before the impact with the ground of the slope. No energy is 

required for the disaggregation of the IBSD. An energy threshold and a probability of 

brakeage are defined in order to determine whether the impacting blocks break or not. The 

distribution of the initial mass between a set of newly generated rock fragments is 

stochastically generated following a power law. The remaining energy is distributed between 

the fragments proportionally to their mass. The trajectories of the new fragments of rock are 

distributed stochastically within a cone. RockGIS has been also recently updated (Matas et 

al. 2020) to complement the improved Rockfall Fractal Fragmentation Method (Ruiz-Carulla 

and Corominas 2020). The updated RockGIS software considers the kinematic of the blocks 

as described in Gischig et al. (2015) and includes the rotational velocity of the blocks.  

No further rockfall fragmentation models can be found in the literature as a deep 

understanding of how the fragmentation phenomenon occurs upon impact is not trivial.  
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3 Design of fragmentation cell 

As part of the PhD research, an innovative experimental setup was developed to 

study rock fragmentation upon impact. The setup was designed to perform controlled 

vertical drop tests and record the following impact parameters: impact force, impulse, impact 

duration, translational and rotational velocities (of the block before impact and of fragments 

after impact) and relevant pre- and post-impact energy components. In this chapter, the 

experimental setup and the methodology to analyse impact data are described in detail. 

 

3.1 Description of the setup 
3.1.1 Impact testing apparatus 

A hexagonal fragmentation cell (Figure 3-1) was developed in order to perform safe 

and controlled drop tests with detailed observation of brittle materials. The hexagonal cell 

consists of alternating polycarbonate and plywood panels, such that the impact in the centre 

of the cell can be recorded with high-speed cameras located outside the cell through the clear 

panels, with the painted plywood panels as background. The cell is 2.3 m high and each side 

is 1.2 m wide. A door on one of the plywood panels provides entry to the cell. The impact 

area consists of a fibre-reinforced concrete slab (1.1 m x 1.1 m x 0.2 m) having a compressive 

strength of 60 MPa. The test blocks are lifted using a vacuum tube (for blocks having a 

smooth surface) and a pulley system, suspended from the structure of the building. Blocks 

are released by opening the vacuum to the atmosphere. The maximum drop height is 5.1 m. 
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Figure 3-1: Experimental setup: (a) plan view of the fragmentation cell. (b) Section A - A of the fragmentation 
cell. (c) View of the fragmentation cell, release device, slab and camera positions. Cam 1 and Cam 2 are indicated 

with arrows because they are behind the cell and not visible. 

 

3.1.2 Impact monitoring 
Three disk-type LPX compression load cells with a capacity of 100 kN each are used 

to record the transmitted force at the bottom of the impact slab (Figure 3-2a and c). Note 

that three 10 mm thick steel plates are embedded in the underside of the slab to avoid 

localised concrete damage at the point of contact with the load cells (Figure 3-2c). The sum 

of the three measured forces, denoted 𝐹𝐹𝑇𝑇, is used as an indirect measurement of the impact 

force. An accelerometer (capacity 50g) is also mounted in a recess in the underside of the 

slab beneath the impact point (Figure 3-2c) to measure the acceleration during the impact 

along the vertical axis. Acceleration data are integrated twice with respect to time to infer the 

displacement of the centre of the slab. Note that the accelerometer is only used to calibrate 

the stiffness of the system. The load cells and the accelerometer are connected to a high 

frequency data logger (USB Compact DAQ system from National Instrument 9234) with a 

logging rate of 12,500 Hz. 

A pressure measurement device (I-Scan High Speed VersaTek) is used to measure 

the impact duration (i.e., contact time between impacting object and the slab). The system 
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utilises sheets of ultra-thin (0.10 mm) flexible sensors to record impact pressures and time. 

The sensor used in this study has 196 individual pressure sensing locations, referred to as 

sensels, arranged in 14 rows and 14 columns (see Figure 3-2b). The sensor is 71.1 mm square 

and has a spatial resolution of 3.9 sensel/cm2. The native logging rate of the sensor is 4,000 

Hz which is too low for the current application. However, the logging rate was increased to 

14,000 Hz by only activating the middle four columns (highlighted in Figure 3-2b) and 

deactivating the peripheral columns. This modification reduces the width of the sensor to 20 

mm, which compromises the measurement of the spatial pressure distribution but allows for 

an accurate measurement of impact duration. Note that there was no larger pressure film 

sensor with suitable logging rate available from the manufacturer. A sheet of aluminium foil 

is placed on top of the pressure sensor for each test, from which the damaged area is used 

to measure the size of the impact area, which can be used to back-calculate the experimental 

deformation of spherical blocks upon impact, from geometrical considerations. 

 

Figure 3-2: (a) Position of load cells (LCs). (b) Pressure sensor used to record the impact duration. (c) Position 
of load cells (LCs) and accelerometer (AC) within the slab. 
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3.1.3 Motion capture 
Four high-speed cameras (referred to as Cam 1 to Cam 4) are used to capture the 

impact from four different positions (see Figure 3-1). Cams 1, 2 and 3 are set up at a distance 

of 0.6 m behind each of the transparent panels, in the same horizontal plane at 0.3 m above 

the floor. Cam 4 is located 3 m above the floor, in one of the corners of the cell. All four 

high-speed cameras are Optronics CR600x2 with a resolution of 1280x1024 pixels. Two 

different lenses are used depending on camera location. The three cameras behind each 

transparent panel (Cam 1 to Cam 3) use a Nikon AF NIKKOR 35mm f/2D lens, the camera 

at the top (Cam 4) has a Nikon AF NIKKOR 50mm f/2D lens. The frame rate used is 500 

fps with a shutter speed of 1/3000s and an aperture of 2.8mm. All cameras are connected to 

a custom-build synchronisation box that serves as master controller. This assures that all 

cameras (slaves) are triggered simultaneously and that images from different perspectives are 

synchronised. A sketch of the camera connections is provided in Figure 3-3. 

 

Figure 3-3: Scheme of camera connections: video (in orange), synchronisation (in red) and triggering system (in 
blue). 

Despite using four high-speed cameras to provide four different views (V1-V4), 

additional views are needed to track fragments with the required accuracy (Guccione et al. 

2019). An additional two views (V5 and V6) were obtained by placing tilted mirrors in front 

of Cam 1 and Cam 2 (see Figure 3-1 and Figure 3-4a), effectively allowing two different views 

to be simultaneously acquired by each camera: a direct view and an indirect view in the 

mirror. Note that this arrangement requires the lens focus to be adjusted to a compromised 

distance somewhere between d and d1 (see Figure 3-4a) in order to see the block/fragments 

from both views (direct and mirrored reflection) with minimal out-of-focus blur. In the rest 

of this thesis, the views are named V1 to V6 according to Figure 3-4b. It should be noted 
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that that the mirrored images from Cam 1 and Cam 2 have to be flipped before processing 

the images of V5 and V6 respectively (Figure 3-5).  

 

Figure 3-4: (a) Camera and mirror with effective object distances d and d3. (b) Physical viewpoints V1 to V4 for 
Cam 1 to Cam 4 and virtual viewpoints V5 and V6 for the mirrored views. 

Adequate lighting is crucial to be able to use high shutter speed and reduce object 

blur within the frame whilst retaining a reasonable depth of field and image quality. For this 

reason, several strips of white LED flex ribbon are installed on each clear panel and LED 

spotlights were mounted on the top of each side of the cell. In addition, 53-Watt LED panels 

(dimension 1200mm x 600mm) were attached to each plywood panel, directly opposite Cam 

1, 2 and 3 (see Figure 3-1). This position allows an appropriate contrast in images taken from 

the bottom views (V1, V2, V3, see Figure 3-5a). To enhance contrast for the top views (V4, 

V5, V6), the slab was painted black (see Figure 3-1 and Figure 3-5b), noting that colour of 

the objects dropped is pale grey. 

 

Figure 3-5: Example of an image taken with Cam 1 (a) with V1 (the whole image usable) and (b) corresponding 
flipped image to be used as mirrored camera with V5 (top views usable only). 
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3.2 Data analysis 
3.2.1 Impact data processing 

The forces recorded from the three load cells (𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3) located under the slab are 

first smoothed using a Python script and the Savitzky–Golay filter from SciPy (Virtanen et 

al. 2020) to remove noise. The three signals are then summed to obtain the total transmitted 

force 𝐹𝐹𝑇𝑇. Smoothing is conducted before summing the signals in order to avoid amplifying 

the noise by summation. An example of impact forces recorded during a drop test (impact 

velocity 2m/s) and the corresponding total transmitted force 𝐹𝐹𝑇𝑇 is given in Figure 3-6. 

 

Figure 3-6: Evolution over time of the forces 𝐹𝐹1,𝐹𝐹2,𝐹𝐹3 recorded by the bottom load cells before and after 
smoothing (solid lines are smoothed forces) and the total force 𝐹𝐹𝑇𝑇 which is the sum of the three smoothed force 

values at any point in time. 

The accelerometer response is processed by first applying a low pass filter to get rid 

of the noise followed by a high pass filter to remove the drift in the signal. The filtered data 

are then integrated twice with respect to time to get the vertical displacement (𝑧𝑧) of the slab. 

Despite the filtering process on the original signal, it was found that the displacement still 

shows signs of being affected by a drift that has no physical cause. To mitigate such drift, the 

final vertical displacement is corrected by a high pass filter. This process is automated using 

a Python script and the Butterworth filter implemented in SciPy (Virtanen et al. 2020). Figure 

3-7 illustrate the steps of the filtering process applied to the accelerometer signal. 
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Figure 3-7: Overview of filtering and integration of accelerometer signal in order to obtain the vertical 
displacement of the slab. (a) Raw signal from accelerometer (𝑎𝑎𝑧𝑧,𝑟𝑟𝑎𝑎𝑟𝑟) over time. (b) Power Spectral Density using 
Welch's method (Virtanen et al. 2020) for 𝑎𝑎𝑧𝑧,𝑟𝑟𝑎𝑎𝑟𝑟 and 𝑎𝑎𝑧𝑧,𝑟𝑟𝑎𝑎𝑟𝑟 after applying high and low pass filter (𝑎𝑎𝑧𝑧,𝐿𝐿&𝐻𝐻𝐻𝐻𝐹𝐹). (c) 
Evolution over time of the vertical slab acceleration (𝑎𝑎𝑧𝑧,𝐿𝐿&𝐻𝐻𝐻𝐻𝐹𝐹). (d) Integration of 𝑎𝑎𝑧𝑧,𝐿𝐿&𝐻𝐻𝐻𝐻𝐹𝐹 to obtain the velocity 
of the slab after filtering (𝑣𝑣𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟). (e) Integration of 𝑣𝑣𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟 to obtain the displacement of the slab after filtering 
(𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟) still affected by drifting. (f) Power Spectral Density using Welch's method for 𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟 and 𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟 after 
applying high pass filter (𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟,𝐻𝐻𝐻𝐻𝐹𝐹). (g) Evolution over time of the vertical slab displacement (𝑧𝑧𝑓𝑓𝑖𝑖𝑓𝑓𝑅𝑅𝑎𝑎𝑟𝑟,𝐻𝐻𝐻𝐻𝐹𝐹). 

 

Two verifications were conducted to check that the filtering process did not alter the 

accelerometer signal. First, the maximum filtered acceleration was multiplied by the mass of 

the slab to return a force. It was verified that this force is within ±10% of 𝐹𝐹𝑇𝑇. The second 

verification involved checking that the time at which the slab displacement and the 

transmitted force 𝐹𝐹𝑇𝑇 return to zero after the first peak of force and displacement is the same 

(see Figure 3-8). 
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Figure 3-8: (a) Evolution over time of forces 𝐹𝐹1,𝐹𝐹2,𝐹𝐹3 recorded by the bottom load cells and the total force 𝐹𝐹𝑇𝑇. 
(b) Evolution over time of the vertical slab displacement. ∆𝑡𝑡𝑅𝑅𝑖𝑖 represents the transmitted impact duration (equal 

for both signals) 

As discussed in Section 3.1.2, the number of measuring cells of the I-scan pressure 

sensor had to be reduced to increase the logging rate, which is detrimental to an accurate 

measurement of impact pressure and, by integration, of impact force. To remedy this issue, 

an indirect estimation of the impact force is proposed by knowing: 

• the transmitted force 𝐹𝐹𝑇𝑇 recorded by load cells at the bottom of the slab, 

• the relationship between the impact duration (from the I-scan pressure sensor on 

top of the slab) and the transmitted impact duration recorded by the bottom load 

cells, and 

• the stiffness of the system (composed of the slab and three load cells). 

The system composed of the slab and three bottom load cells can be represented by 

a mass-spring-damper model (Figure 3-9a). The equation of motion of the free body diagram 

illustrated in Figure 3-10b is: 

 𝑚𝑚𝑠𝑠�̈�𝑧 + 𝑐𝑐�̇�𝑧 + 𝑘𝑘𝑧𝑧 = 𝐹𝐹(𝑡𝑡) (3-1) 

where 𝑚𝑚𝑠𝑠 is the mass of the slab, 𝑐𝑐 is the dimensional viscosity damping coefficient, 𝑘𝑘 is the 

stiffness of the system and �̈�𝑧, �̇�𝑧, 𝑧𝑧 are acceleration, velocity and displacement of the slab, 

respectively. 𝐹𝐹(𝑡𝑡) is the external force applied to the system at time 𝑡𝑡, i.e. the impact force 

𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅. 
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The sum of the reaction forces at the base shown in Figure 3-9b must be equal to 

the sum of the forces recorded from the load cells (𝐹𝐹𝑇𝑇). Assuming the slab is rigid, this can 

be written as (Thorby 2008): 

 𝐹𝐹𝑇𝑇 =  𝑐𝑐�̇�𝑧 + 𝑘𝑘𝑧𝑧 (3-2) 

 

Figure 3-9: (a) Sketch of the slab-load cells system with applied force in schematic form of a mass-spring-damper 
and (b) corresponding free body diagram. 

 

According to Thorby (2008), the force transmissibility is defined as ratio 

|𝐹𝐹𝑇𝑇|/�𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅�, the magnitude of the total reaction force divided by the magnitude of the 

applied force (i.e. impact force). By expressing Eqs. (3-1) and (3-2) in complex form the force 

transmissibility can be obtained (Thorby 2008): 

 |𝐹𝐹𝑇𝑇|
�𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅�

= �
1 + (2𝛽𝛽Ω)2

(1 − Ω2)2 + (2𝛽𝛽Ω)2 (3-3) 

where 𝛽𝛽 is the non-dimensional viscous damping coefficient and Ω is the frequency ratio, 

defined as: 

 𝛽𝛽 = �1 − �
𝑓𝑓𝑑𝑑
𝑓𝑓𝑛𝑛
�
2

 (3-4) 

 Ω =
𝑓𝑓
𝑓𝑓𝑛𝑛

 (3-5) 
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with 𝑓𝑓𝑑𝑑 being the damped natural frequency, 𝑓𝑓𝑛𝑛 the undamped natural frequency of the 

system and 𝑓𝑓 the impact force frequency. 

From the direct measurement of the impact duration ∆𝑡𝑡𝑖𝑖 (by the pressure sensor) 

and the transmitted impact duration recorded from the bottom load cells ∆𝑡𝑡𝑅𝑅𝑖𝑖, the impact 

force frequency 𝑓𝑓 and the damped natural frequency 𝑓𝑓𝑑𝑑 can be obtained as: 

 𝑓𝑓 =
2𝜋𝜋

2∆𝑡𝑡𝑖𝑖
 (3-6) 

 𝑓𝑓𝑑𝑑 =
2𝜋𝜋

2∆𝑡𝑡𝑅𝑅𝑖𝑖
 (3-7) 

The undamped natural frequency 𝑓𝑓𝑛𝑛 is determined knowing the stiffness 𝑘𝑘 of the 

system and the mass of the slab 𝑚𝑚𝑠𝑠 as: 

 𝑓𝑓𝑛𝑛 = �
𝑘𝑘
𝑚𝑚𝑠𝑠

 (3-8) 

The stiffness 𝑘𝑘 of the system in Figure 3-9b is a function of the inherent slab stiffness 

but also of the stiffness of the load cells. 𝑘𝑘 can be estimated from the maximum force 𝐹𝐹𝑇𝑇 

(from load cells) and the corresponding maximum displacement of the slab 𝑧𝑧𝑖𝑖𝑎𝑎𝑥𝑥 (from 

accelerometer). The estimation of the stiffness 𝑘𝑘 of the system is reported in Section 6.2.2. 

The total impulse generated by the impact is another important impact descriptor 

defined as: 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 = � 𝐹𝐹(𝑡𝑡) 𝑑𝑑𝑡𝑡
∆𝑅𝑅𝑖𝑖

0
 (3-9) 

where 𝐹𝐹(𝑡𝑡) is the impact force at instant 𝑡𝑡 and ∆𝑡𝑡𝑖𝑖 is the total impact duration. Figure 3-10 

shows an example of the evolution of the impact force over time. The area under the curve 

showing the evolution of impact force with time can be approximated as area of a triangle 

having a base equal to ∆𝑡𝑡𝑖𝑖 and height equal to the maximum value of 𝐹𝐹(𝑡𝑡), denoted 

𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 (Figure 3-10). Hence, the total impulse of the impact can be computed using the 
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maximum estimated impact force and the recorded impact duration (from the pressure 

sensor): 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 =
1
2
∙ 𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 ∙ ∆𝑡𝑡𝑖𝑖  (3-10) 

 

Figure 3-10: Experimental and simplified evolution of impact force in time during impact. 

 

To summarise, the measurements of transmitted impact force and transmitted 

impact duration from the load cells, combined with the measurement on the impact duration 

from the pressure sensor allow the estimation of impact force (on top of the slab) by using 

Eq (3-3). The estimated impact force combined with the measured impact duration are in 

turn used to estimate the impulse at the impact by using Eq. (3-10). 

 

3.2.2 Image processing 
The commercial software TEMA3D (Image Systems Motion Analysis 2019) is used 

to process all synchronised images captured by the high-speed cameras. At the beginning of 

each testing day, a calibration is performed by taking a snapshot of a reference structure, the 

so-called calibration stick (Figure 3-11a), simultaneously with all cameras (Figure 3-11b). The 

images are then used to collimate all known points in all views. After the calibration, the 

location and orientation of each camera and the scale of the impact area are known. 
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Figure 3-11: (a) Picture of the calibration stick with reference points (numbered 1 to 18); (b) position of the 
calibration stick with respect to the viewing points – note that V5 and V6 are mirrored views. 

 

TEMA3D supports many different tracking algorithms, two of which were used in 

this study, namely feature tracking and outline tracking.  

The feature tracking algorithm relies on tracking the 3D coordinates of a feature that 

can easily be visualised on an object. Translational velocities and accelerations of the feature 

or object are then estimated.  To get the rotational velocity, two or more features including 

the centre of gravity (CofG) have to be tracked. Knowing the relative position of a feature 

point (here noted as P1) of the block with respect to the CofG, the angle between the vector 

CofG-P1 at time i and the same vector at time i + ∆t can be calculated. Feature tracking can 

be conducted from one or more viewpoints. 

The outline tracking algorithm finds the outline of the object in the image (Figure 

3-12) via a thresholding algorithm used to separate an object from a background, provided a 

good enough contrast exists between the object and the background. Satisfactory contrast is 

here achieved by using LED panels in the background (see Section 3.1.3). The outline is 

made up by a four-connective chain code, which is a sequence of up, down, left or right 

movements along the pixels (Anliot 2005). The chain code is complete when the sum of all 

movements ends up back at the starting pixel and the outline is defined. 
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Figure 3-12: Example of outline tracking (red line) of a brick. 

The outline of a view shows the silhouette of an object. The silhouette back projected 

to the camera creates a 3D viewing cone within which the object resides (Figure 3-13a). The 

intersection of all silhouette viewing cones, one from each camera view, gives an 

approximation of the 3D shape of the object called visual hull (VH) (Anliot 2005). The 3D 

visual hull is then meshed with triangles (Figure 3-14) based on a specific resolution (referred 

to as a VH resolution). The physical attributes of the approximated 3D mesh (such as 

volume, barycentre, principal axes, moment of inertia) can then be calculated. 

The accuracy of the VH depends on the number of available views. Figure 3-13b and 

c, for example, show the concept of the VH of a cube in 3D for a case with two and three 

cameras respectively. It can clearly be seen that the VH is an approximation of the real shape 

(Figure 3-14) using a 3D surface mesh of triangular elements. The physical attributes of the 

approximated 3D surface mesh (i.e. volume, barycentre, principal axes, moment of inertia) 

can then be calculated and used to analyse trajectory and energy. 

The approximation of the shape using the VH algorithm was found to be generally 

good enough to find the coordinates of the barycentre of the object, which is used when 

calculating translational velocity. However, identifying the principal axes is generally not very 

accurate. This is a major issue, as the principal axes are needed to compute the rotational 

velocity. Another limitation of the visual hull approach resides in the difficulty to track 

rotation of symmetric objects, such as spheres or cubes. Although this is generally not a 

problem for fragments that tend to be irregular, it is problematic when tracking rotation of 

regular objects in free fall, prior to impact and fragmentation, if they also undergo rotation. 

In order to address some of the current limitations and improve accuracy of rotational 

velocity tracking, a new post-processing algorithm was here developed (Guccione et al. 2020) 

with details given in the following Section 3.2.3. 
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Figure 3-13: (a) Concept of silhouette and 3D cone from a viewpoint. Visual hull (in blue) based on: (2) 2 
viewpoints and (c) 3 viewpoints. 

 

Figure 3-14: Example of visual hull (using 4 views) and real shape. 

 

3.2.3 New post-processing algorithm 
The developed post-processing algorithm relies on the knowledge of the real 3D 

geometry of the object, which can generally be determined before and/or after the test by 

an accurate photogrammetric survey or a 3D scan (Guccione et al. 2020). In this study, a 

structured light scanner (EinScan Pro 2X Plus) was used to reconstruct the real 3D geometry 

of the object. The objective is to align the 3D mesh obtained by scanning the real geometry 

with the approximated mesh of the VH exported from TEMA3D, at each time step, in order 

to calculate the orientation of the principal axes (Figure 3-15) and, hence, estimate the 

rotational velocity. The alignment process is performed using the iterative closest point (ICP) 

algorithm where points of the real geometry are automatically aligned to a sub-sampled point 

cloud of the VH. This step is executed within the open-source program CloudCompare 

(CloudCompare 2020) whereas the calculation of the principal axes is performed with the 

open-source library trimesh (Dawson-Haggerty 2019). This two-step process is repeated for 

each time step. Finally, the rotational velocity is estimated based on the orientation of the 

new calculated principal axes. The procedure can be summarised as follows, where all steps, 

except steps 1 and 2, have been implemented into a Python script: 
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1. Automatically export VH meshes for all time steps 𝑖𝑖 from TEMA3D. Note that 

AutoHotkey (AutoHotkey Foundation LLC 2020) is used to automate the process 

of exporting the mesh, at each timestep. 

2. Manually align the mesh of the real geometry with the first VH mesh (i.e. first time 

step 𝑖𝑖 = 0), to assure the ICP converges to the correct solution, hence, avoiding 

misalignment. 

3. Sub-sample all VH meshes to achieve a point density similar to that of the real 

geometry. 

4. Automatically align the real geometry (manually aligned mesh in the first timestep 

𝑖𝑖=0 and mesh from the previous timestep 𝑖𝑖 − 1 thereafter, for 𝑖𝑖 ≥ 1) to the sub-

sampled point clouds using the ICP. 

5. Calculate the orientation of the principal axes using the aligned real geometry. This 

is done using the library trimesh. It should be noted that the calculated axes do not 

always represent a right-handed coordinate system. Hence, the third principal axis is 

always recalculated as cross product of the first two principal axes.  

6. Check the orientation of the principal axes for timestep 𝑖𝑖 based on the orientation in 

the previous timestep 𝑖𝑖 − 1. This is necessary since the solution of the principal axes 

is not unique (four solutions are possible), i.e. the axes can be orientated in the 

positive or negative direction. Hence, changing the direction of the principal axes by 

180 degrees is sometimes required. 

7. Calculate the rotation between timesteps 𝑖𝑖 and 𝑖𝑖 − 1. For each timestep, the 

rotational increment around each axis is calculated relative to axis positions from the 

previous timestep. This increment is then accumulated with time increments from 

earlier times, to produce the total rotation around the principal axes from timestep 

𝑖𝑖 = 0. 

8. Fit a linear trendline to cumulative angle increments around each principal axis, in 

time, to estimate the rotational velocity around each principal axis. It is assumed that 

the influence of air resistance on the rotational velocity is negligible, hence, a linear 

trendline.  

The main steps of the post-processing algorithm are outlined in Figure 3-15.  
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Figure 3-15: Scheme of the post-processing algorithm to calculate the rotational velocities of fragments with 

indication of the software or code used at each step of the process. 

 

3.2.4 Energy balance 
The experimental setup was designed to estimate the amount of energy dissipated 

during impact and consumed in fragmentation. This is achieved by conducting an energy 

balance starting with the conservation of energy (noted 𝐸𝐸), expressed as: 

 𝐸𝐸𝑘𝑘𝑟𝑟 = ∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅 + 𝐸𝐸𝑘𝑘𝑎𝑎 (3-11) 

where subscript 𝑘𝑘 stands for kinetic and it is referred as the total kinetic energy (i.e. 

translational plus rotational); superscript 𝑏𝑏 for before the impact; and superscript 𝑎𝑎 for after 

the impact. ∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅 is the total energy loss associated with the impact.  

The total kinetic energy 𝐸𝐸𝑘𝑘 before and after impact is decomposed into a translational 

component 𝐸𝐸𝑘𝑘𝑅𝑅 and a rotation component 𝐸𝐸𝑘𝑘𝑟𝑟: 

 𝐸𝐸𝑘𝑘𝑟𝑟 = 𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟 + 𝐸𝐸𝑘𝑘𝑟𝑟𝑟𝑟  (3-12) 

 𝐸𝐸𝑘𝑘𝑎𝑎 = 𝐸𝐸𝑘𝑘𝑅𝑅𝑎𝑎 + 𝐸𝐸𝑘𝑘𝑟𝑟𝑎𝑎  (3-13) 
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Where impact results in fragmentation, the term 𝐸𝐸𝑘𝑘𝑎𝑎 corresponds to the sum of the 

total kinetic energy (i.e. translational plus rotational) of all fragments: 

 𝐸𝐸𝑘𝑘𝑅𝑅𝑎𝑎 = �𝐸𝐸𝑘𝑘𝑅𝑅,𝑖𝑖
𝑎𝑎

𝑛𝑛

𝑖𝑖=1

= �
1
2
∙ 𝑚𝑚𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 (3-14) 

 𝐸𝐸𝑘𝑘𝑟𝑟𝑎𝑎 = �𝐸𝐸𝑘𝑘𝑟𝑟,𝑖𝑖
𝑎𝑎

𝑛𝑛

𝑖𝑖=1

= �
1
2
∙ �𝐼𝐼𝐼𝐼,𝑖𝑖 ∙ 𝜔𝜔𝐼𝐼,𝑖𝑖

2 + 𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 ∙ 𝜔𝜔𝐼𝐼𝐼𝐼,𝑖𝑖
2 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 ∙ 𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖

2 �
𝑛𝑛

𝑖𝑖=1

 (3-15) 

where 𝑛𝑛 is the number of fragments; 𝐸𝐸𝑘𝑘𝑅𝑅,𝑖𝑖
𝑎𝑎  is the translational kinetic energy of fragment 𝑖𝑖; 

𝑚𝑚𝑖𝑖 is the mass of fragment 𝑖𝑖; 𝑣𝑣𝑖𝑖 is the absolute translational velocity of fragment 𝑖𝑖; 𝐸𝐸𝑘𝑘𝑟𝑟,𝑖𝑖
𝑎𝑎  is 

the rotational kinetic energy of fragment 𝑖𝑖; 𝐼𝐼𝐼𝐼,𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 are the moments of inertia for 

the principal axes of fragment 𝑖𝑖; and 𝜔𝜔𝐼𝐼,𝑖𝑖 ,𝜔𝜔𝐼𝐼𝐼𝐼,𝑖𝑖 and 𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼,𝑖𝑖 are the rotational velocities around 

the 3 principal axes of fragment 𝑖𝑖. All components of velocities are estimated from image 

processing as discussed in Section 3.2.2. 

The equations to estimate the amount of energy dissipated by displacement, 

damage/fragmentation and elasto-plastic deformation are given below: 

• The energy loss associated to the elastic displacement of the slab ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 can be 

estimated as: 

 ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 =
1
2
∙ 𝐹𝐹𝑇𝑇 ∙ 𝑧𝑧𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 (3-16) 

Eq. (3-16) assumes that the vertical displacement of the centre of the slab, 𝑧𝑧𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟, 

inferred from the accelerometer signal, does not include a deformation component 

due to bending of the slab. Given the magnitude of the impact load and the flexural 

stiffness of the slab, this assumption is considered valid.  

• The energy loss to create the fracture surfaces ∆𝐸𝐸𝑓𝑓𝑟𝑟 can be estimated using Eq. (3-17) 

(Hou et al. 2017): 

 ∆𝐸𝐸𝑓𝑓𝑟𝑟 = 𝛾𝛾�𝐴𝐴𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (3-17) 
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𝐴𝐴𝑗𝑗 corresponds to the area of new surfaces generated by fragmentation. This area 

can be measured after the drop test by scanning each of the fragments. In this study, 

a high-resolution structured light scanner (EinScan Pro 2X Plus) was used. The 

surface energy per unit area of the rock block 𝛾𝛾 can be determined by the well-known 

Irwin’s correlation (Zhang and Zhao 2014a): 

 𝛾𝛾 =
𝐾𝐾𝐼𝐼𝑐𝑐2 (1 − 𝜈𝜈𝑖𝑖2 )

𝑌𝑌𝑖𝑖
 (3-18) 

where 𝐾𝐾𝐼𝐼𝑐𝑐 is the mode I fracture toughness that can be determined using semi-

circular bend specimens (Kuruppu et al. 2014), 𝑌𝑌𝑖𝑖 is the Young’s modulus and 𝜈𝜈𝑖𝑖 

is the Poisson’s ratio of the material the block is made of (in the case of this work 

mortar). 

Damage and fragmentation are related (i.e. fragmentation is a consequence of 

damage) so that Eq. (3-17) can be used to compute the energy consumed in damage 

and in fragmentation. However not all damage causes the formation of discrete 

fragments, so the difference between the two cases lies in the difficulty to estimate 

the extent of cracking and new surfaces within fragments, that do not lead to further 

fragmentation. 

• The energy loss in local elastic-plastic deformation of both slab and impacting object 

∆𝐸𝐸𝑑𝑑  can be estimated as follows: 

 ∆𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟 ∙ (1 − 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑2) (3-19) 

where 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑 is the coefficient of restitution defined, for an elastic-perfectly plastic 

sphere impacting a plate (Stronge 2000), as: 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑 =
𝑣𝑣𝑥𝑥
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

�
8
5
∙ �
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎
𝑣𝑣𝑥𝑥

�
2

−
3
5�

3
8

 (3-20) 

In Eq. (3-20) 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 is the impact velocity and 𝑣𝑣𝑥𝑥 is the yield velocity defined as: 
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 𝑣𝑣𝑥𝑥 = ��
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∙ 𝜋𝜋� �

3
4
∙ 𝜋𝜋�

4

�
𝜗𝜗𝑥𝑥𝜎𝜎𝑥𝑥
𝑌𝑌�𝑖𝑖𝑐𝑐

�
4

�
𝜗𝜗𝑥𝑥𝜎𝜎𝑥𝑥𝑅𝑅�3

𝑚𝑚
��

1
2

 (3-21) 

where 𝑚𝑚 is the mass of the impacting body; 𝜎𝜎𝑥𝑥 is equal to the yield stress of the 

impacting material (assumed equal to the compressive strength 𝜎𝜎𝑐𝑐); and 𝜗𝜗𝑥𝑥 is the 

ratio of mean indentation pressure (assumed fully plastic) to uniaxial yield stress. 𝜗𝜗𝑥𝑥 

is assumed equal to 1.61 to consider a higher failure stress compared to a uniaxial 

load case, as per Wang and Zhu (2013). 𝑌𝑌�𝑖𝑖𝑐𝑐 and 𝑅𝑅� are the equivalent Young’s 

modulus and the equivalent radius, respectively.  

The equivalent radius 𝑅𝑅� is defined as: 

 
1
𝑅𝑅�

=
1
𝑅𝑅1

+
1
𝑅𝑅2

 (3-22) 

where 𝑅𝑅1 is the radius of the sphere and 𝑅𝑅2 is the radius of the slab. The radius of 

the slab 𝑅𝑅2 is much greater than 𝑅𝑅1 so it can be assumed infinite and, hence, Eq. 

(3-22) becomes 𝑅𝑅� = 𝑅𝑅1. 

The equivalent Young’s modulus 𝑌𝑌�𝑖𝑖𝑐𝑐 can be determined from Eq. (3-23): 

 
1
𝑌𝑌�𝑖𝑖𝑐𝑐

=
1 − 𝜈𝜈𝑖𝑖2

𝑌𝑌𝑖𝑖
+

1 − 𝜈𝜈𝑐𝑐2

𝑌𝑌𝑐𝑐
 (3-23) 

where 𝑌𝑌𝑖𝑖 is the Young’s modulus of the mortar, 𝜈𝜈𝑖𝑖 the Poisson’s ratio of the mortar, 

𝑌𝑌c the Young’s modulus of the system slab (the combination of the concrete slab 

plus load cells that support it), and 𝜈𝜈c is the Poisson’s ratio of the concreate slab.  

The elastic modulus of the system 𝑌𝑌c is obtained by a double fitting procedure based 

on a non-linear least square method (Virtanen et al. 2020), where the value of 𝑌𝑌c is 

varied until a satisfactory goodness of fit is obtained between: 

(1) the theoretical evolution of restitution coefficient (𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑) (given by Eq. (3-20)) 

with impact velocity and the measured coefficient of restitution (𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑�������) and  
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(2) the theoretical evolution of impact duration (approximated by Eq. (3-24)) with 

impact velocity and the measured impact duration obtained from the I-scan 

sensor. According to Deresiewicz (1968), the theoretical impact duration ∆𝑡𝑡 can 

be estimated as 2 times the period of the elastic compression 𝑡𝑡𝑐𝑐: 

 ∆𝑡𝑡 = 2 ∙ 𝑡𝑡𝑐𝑐 = 2 ∙ �1.43 ∙ �
𝑚𝑚2

𝑌𝑌�𝑖𝑖𝑐𝑐
2𝑅𝑅�𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

�

1
5

� (3-24) 

For a drop tests where the object falls without initial rotational energy and energy is 

dissipated in damage (or fragmentation), slab displacement and local elasto-plastic 

deformations, the energy balance reads:  

 𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟 = ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 + ∆𝐸𝐸𝑓𝑓𝑟𝑟 + ∆𝐸𝐸𝑑𝑑 + 𝐸𝐸𝑘𝑘𝑅𝑅𝑎𝑎  (3-25) 

Hence, the energy loss in elastic-plastic deformation ∆𝐸𝐸𝑑𝑑 is equal to: 

 ∆𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟 − ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 − ∆𝐸𝐸𝑓𝑓𝑟𝑟 − 𝐸𝐸𝑘𝑘𝑅𝑅𝑎𝑎  (3-26) 

which can further be rearranged to: 

∆𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟 �1 −
∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 + ∆𝐸𝐸𝑓𝑓𝑟𝑟 + 𝐸𝐸𝑘𝑘𝑅𝑅𝑎𝑎

𝐸𝐸𝑘𝑘𝑅𝑅𝑟𝑟
� (3-27) 

Given Eq. (3-19) and (3-27), it is possible to identify the measured coefficient of 

restitution due to elastic-plastic deformation (𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑�������) as: 

 
𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑������� = �

∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 + ∆𝐸𝐸𝑓𝑓𝑟𝑟 + 𝐸𝐸𝑘𝑘𝑡𝑡
𝑎𝑎

𝐸𝐸𝑘𝑘𝑡𝑡
𝑟𝑟  (3-28) 

Another possible source of energy dissipation that was considered is elastic wave propagation 

(through the slab and the block), which can be quantified using Zener’s model (Zener 1941). 

The model considers the effect of stress waves on the collision between a sphere and a slab 

and is based on the assumption that during the normal impact, the kinetic energy of the 

sphere can be distributed between the generation of an elastic stress field near the contact 
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point and a radial propagation of elastic waves into the slab. In Zener’s model, the inelasticity 

parameter, λ , combines the parameters affecting the impact: 

 λ =
𝜋𝜋3/5

√3
�
𝑅𝑅1
ℎ𝑠𝑠
�
2

�
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

𝑣𝑣𝑎𝑎
�
1/5

�
𝜌𝜌𝑖𝑖
𝜌𝜌𝑐𝑐
�
3/5

�
𝑌𝑌𝑖𝑖/(1 − 𝜈𝜈𝑖𝑖2 )

𝑌𝑌𝑖𝑖/(1 − 𝜈𝜈𝑖𝑖2 ) + 𝑌𝑌𝑐𝑐/(1 − 𝜈𝜈𝑐𝑐2)� (3-29) 

where 𝑅𝑅1 is the radius of the sphere, ℎ𝑠𝑠 is the thickness of the slab, 𝜌𝜌𝑖𝑖 is the density of the 

mortar sphere, 𝜌𝜌𝑐𝑐 is the density of the concrete slab, 𝑌𝑌𝑖𝑖 is the Young’s modulus of the 

sphere, 𝜈𝜈𝑖𝑖 is the Poisson’s ratio of the mortar sphere, 𝑌𝑌c is the Young’s modulus of the 

system (slab plus load cells), 𝜈𝜈c is the Poisson’s ratio of the concrete slab, 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 is the impact 

velocity of the mortar sphere and 𝑣𝑣𝑎𝑎 is the propagation velocity of quasi-longitudinal waves 

in the slab, which is equal to: 

 𝑣𝑣𝑎𝑎 = �
𝑌𝑌𝑐𝑐

𝜌𝜌𝑐𝑐(1 − 𝜈𝜈𝑐𝑐2) (3-30) 

The energy lost in elastic wave propagation ∆𝐸𝐸𝑟𝑟 through the slab and the sphere can be 

estimated using a coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑟𝑟 (Zener 1941): 

∆𝐸𝐸𝑟𝑟 = 𝐸𝐸𝑘𝑘𝑡𝑡
𝑟𝑟 ∙ (1 − 𝐶𝐶𝐶𝐶𝑅𝑅𝑟𝑟2 ) (3-31) 

with 

𝐶𝐶𝐶𝐶𝑅𝑅𝑟𝑟 =
1 − 0.88𝜆𝜆
1 + 0.88𝜆𝜆

 (3-32) 

Due to the geometry and the material characteristics involved in this study, the coefficient 

of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑟𝑟 is close to 1, therefore the term (1 − 𝐶𝐶𝐶𝐶𝑅𝑅𝑟𝑟2  ) in Eq. (3-31) is rather 

small. Hence, the energy loss due to the elastic wave propagation can be considered 

negligible. Other modes of energy dissipation such as sound and thermal components are 

also assumed negligible.  

In conclusion, Equation (3-11) can be used to estimate the total amount of energy 

dissipated upon impact through the three main dissipative processes: namely, the elastic-
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plastic deformation of an impacting block and slab, the displacement of the slab as a whole, 

and fracture formation associated with damage, and ultimately, fragmentation. 

 

3.3 Secondary setup 
Based on the experimental setup described in Section 3.1 and the methodology 

presented in Section 3.2 a secondary setup was developed to conduct further investigation 

on fragment size distribution at impact velocities higher than 10 m/s (the maximum impact 

velocity achievable form the fragmentation cell setup described in Section 3.2). 

The secondary setup was located in the stairwell beside the climbing tower at the 

Forum gym of the University of Newcastle (Figure 3-16). The 6-storey staircase arrangement 

comprises half-flights of stairs reversing in direction at small landings at either end, to form 

a central well with a width of 100 mm. To safely drop the spheres from different heights 

without interference from the adjacent stairs, the spheres were dropped through a 100 mm 

diameter PVC pipe that was threaded through the central well and fixed to the handrail of 

the stairway (Figure 3-16c), in a position so that it could be accessed at any height from the 

stair flights. The pipe was perforated with pairs of 20 mm holes drilled every metre and 

positioned diametrically across from each other to reduce the piston effect of the falling balls.  

The spheres were dropped into the top of the pipe, and were delivered from the end 

of the pipe, 0.8m above a concrete impact slab (with the same strength as the slab described 

in Section 3.1 but smaller dimension of 0.8 m x 0.8 m x 0.2 m). The impact slab was again 

supported on 3 load cells. The same four high-speed cameras used for the other setup were 

installed around the impact point (see Figure 3-16a, b and d). Cam 1 was set up 

perpendicularly to the slab while Cams 2, 3 and 4 were arranged in order to have three top 

views of the impact (see Figure 3-16a, b and d). A black plastic sheet apron was placed on 

the floor to increase the visibility and contain the fragments. 
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Figure 3-16: Secondary setup: (a) plan view of the secondary setup, (b) view of the slab, pipe, plastic sheet, lights 
and Cam 2, (c) view of pipe within the central well of the staircase, looking down, and (d) view of Cam 3 and Cam 

4. 



62 

 

 



63 

 

 

4 Derivation of predictive model for 

Survival probability 

4.1 Rationale 
The survival probability (𝐼𝐼𝑆𝑆) of grains or spheres subjected to compressive stress 

loading is commonly described using a Weibull distribution (Frossard et al. 2012; Weibull 

1951): 

 
𝐼𝐼𝑆𝑆(𝜎𝜎) = 100 ∙ 𝑒𝑒−�

𝜎𝜎
𝜎𝜎𝑐𝑐𝑐𝑐

�
𝜇𝜇

 (4-1) 

where 𝜎𝜎 is the stress applied to the particles; 𝐼𝐼𝑆𝑆(𝜎𝜎) is the survival probability of the grain 

under stress 𝜎𝜎; 𝜇𝜇 is the distribution shape parameter corresponding to the slope of the central 

part of the Weibull distribution; and 𝜎𝜎𝑐𝑐𝑟𝑟  is the scale parameter, also called critical value of 𝜎𝜎, 

corresponding to a survival probability equal to 1/𝑒𝑒 ~ 37%. In this study, the survival 

probability of a brittle sphere upon dynamic impact, here referred to as impact survival 

probability, is described using a Weibull distribution expressed as a function of the impact 

kinetic energy (𝐸𝐸𝑘𝑘𝑟𝑟). It is suggested that for controlled specimen shape and controlled testing 

conditions (i.e. release and impact conditions), the impact survival probability is strongly 

correlated to the variability of the mechanical properties of the material, which can be 

assessed from the cumulative distribution of measured mechanical properties under quasi-

static loading. This thesis focuses on the survival probability for each series of 

characterisation tests, expressed as:  

 𝐼𝐼𝑆𝑆(𝜎𝜎) = 1 − 𝐶𝐶𝐷𝐷(𝜎𝜎) (4-2) 

where 𝐶𝐶𝐷𝐷(𝜎𝜎) is the value of cumulative distribution corresponding to a stress value of 𝜎𝜎.  
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The rationale of the novel model is to employ shape and scale parameters to describe 

impact survival probability from the survival probability of specimens subjected to material 

characterisation tests. The shape parameter 𝜇𝜇 of the impact survival probability 𝐼𝐼𝑆𝑆 was taken 

as the shape parameter of the Weibull distribution of the work/energy required to fail rock 

specimens under indirect tension by compressive loading, which is motivated by two reasons:  

• Of all characterisation tests, indirect tension tests best captures the failure pattern of 

brittle spheres under impact, in the range of energy that is relevant to characterise the 

survival probability (Arbiter et al. 1969; Asteriou et al. 2013a; Chau et al. 2000; Salman 

et al. 2004). 

• Fragmentation upon dropping occurs as the result of an impact, the magnitude of 

which is quantified by an energy, and work is a measure of energy as opposed to 

force, strength or toughness. 

Note that in the rest of this chapter, compressive loading always applies to spheres 

or discs, hence resulting in indirect tensile tests. The terms “compression” and “indirect 

tension” are hence used interchangeably. “Brazilian tests” specifically refer to a compression 

on a disc, not a sphere.  

The work-based scale parameter of the impact survival probability (denoted 𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑐𝑐𝑟𝑟   

in place of 𝜎𝜎𝑐𝑐 in Eq. (4-1)) will be estimated from the critical work required to achieve failure 

during Brazilian tests (noted 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟 ) and three conversion factors (𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎, 𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐶𝐶𝑟𝑟𝑎𝑎𝑅𝑅𝑎𝑎) 

that account for size, shape and strain effects, respectively. Specifically: 

• 𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 converts the work required to fail a disc of diameter 𝑑𝑑 in a Brazilian test 

(𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)) into the work required to fail a sphere of diameter 𝑑𝑑 under compressive 

loading (𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑)); 

• 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎 converts the work required to fail a sphere of diameter 𝑑𝑑 in compression 

(𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑)) into the work required to fail a sphere of diameter 𝐷𝐷 in compression 

(𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷)); and  

• 𝐶𝐶𝑟𝑟𝑎𝑎𝑅𝑅𝑎𝑎 converts the work required to fail a sphere of diameter 𝐷𝐷 under quasi-static 

compression (𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷)) to the kinetic energy to fail a sphere of diameter 𝐷𝐷 under 

dynamic loading (𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟 ).  
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Figure 4-1 provides a schematic overview of the different steps followed to predict 

the critical kinetic energy of spheres undergoing drop tests from the critical work of indirect 

tensile tests performed on discs. The derivations of the three conversion factors will be 

covered in the next sections. Once the two Weibull parameters have been predicted, the 

impact survival probability is determined by using a Weibull function or, as is shown in the 

in the following sections, a linear function.  

 

Figure 4-1: Schematic representation of the novel model to predict the critical kinetic energy for failure of a 
sphere upon dynamic impact. The process starts with the distribution of work required to fail a disc of diameter 𝑑𝑑 
under indirect tension (Brazilian test). The critical value of work 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)

𝑐𝑐𝑟𝑟  corresponding to a survival probability 
of 37% is converted into the critical kinetic energy 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑐𝑐𝑟𝑟  of a sphere of diameter 𝐷𝐷 falling on a concrete slab 
through application of factors 𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎 and 𝐶𝐶𝑟𝑟𝑎𝑎𝑅𝑅𝑎𝑎. 

 

4.2 Derivation of shape conversion factor 
Before delving into the derivation of all conversion factors, it is acknowledged that 

the applied force is assumed to evolve linearly with resulting displacement during all indirect 

tensile tests, and the conversion factor for work is made of two partial conversion factors: a 

conversion factor for the maximum force (𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹) and a conversion factor for the 

maximum displacement (𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿), defined in Equations (4-3) to (4-7) below. The same 

concept applies to the rate conversion factor in Section 4.4.  
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The force and displacement at failure for the sphere of diameter 𝑑𝑑 (𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑), 𝛿𝛿𝑆𝑆𝐿𝐿(𝑑𝑑)) 

can be expressed as function of force and displacement at failure for the disc of diameter 𝑑𝑑 

subjected to a Brazilian test (𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑), 𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑)): 

 𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑) = 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑) (4-3) 

 𝛿𝛿𝑆𝑆𝐿𝐿(𝑑𝑑) = 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 ∙ 𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑) (4-4) 

where 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 and 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 are shape conversion factors from disc to sphere for the force 

and the displacement at failure, respectively. The work 𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) required to fail a sphere of 

same diameter as the disc under indirect tension is:  

 
𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) =

1
2
𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑) ∙ 𝛿𝛿𝑆𝑆𝐿𝐿(𝑑𝑑) =

1
2
�𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)� ∙ �𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 ∙ 𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑)� 

⟹𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) = 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 ∙ 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 ∙ 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑) 

(4-5) 

with 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑) = 1
2
𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑) ∙ 𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑). 

Eq. (4-5) can be re-written as:  

 𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) = 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑) (4-6) 

with: 

 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 ∙ 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 (4-7) 

where 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is the shape conversion factor from disc to sphere, of same diameter, for quasi-

static compression. 
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4.2.1 Shape conversion factor for force 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 
The force conversion factor can be estimated from equations that give the tensile 

strength of a sphere (Eq. (4-8)) (Hiramatsu and Oka 1966) and disc (Eq. (4-9)) (Perras and 

Diederichs 2014) under indirect tensile test loading:  

 
𝜎𝜎𝑅𝑅 =

0.9 ∙ 𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑)

𝑑𝑑2
 (4-8) 

 
𝜎𝜎𝑅𝑅 =

4 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)

𝜋𝜋 ∙ 𝑑𝑑2
 (4-9) 

For a sphere and a disc made of the same material and with the same diameter, 

equating Eq. (4-8) to Eq. (4-9) leads to 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 = 1.41 

 

4.2.2 Shape conversion factor for displacement 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 
Hertzian contact theory (Stronge 2000) provides the total deformation when a sphere 

or a disc are compressed against a flat surface. In the case of steel platens, it is reasonable to 

consider that the total deformation occurs within the disc, providing an expression for 𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑) 

(modified from Japaridze (2015)) 

 
𝛿𝛿𝐵𝐵𝑇𝑇(𝑑𝑑) =

4 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑) ∙ (1 − 𝜈𝜈𝑖𝑖2 )
𝜋𝜋 ∙ 𝑌𝑌𝑖𝑖 ∙ ℎ �0.41 + ln(2𝑑𝑑) − 0.5 ∙ ln�

2 ∙ 𝑑𝑑 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)

𝜋𝜋 ∙ ℎ ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠
�� (4-10) 

where 𝑑𝑑 and ℎ are the diameter and thickness of the cylinder tested under indirect tensile 

test, respectively;∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)  is the force required to fail the disc under indirect tension with a 

quasi-static loading rate; 𝑌𝑌𝑖𝑖 is the elastic modulus of the mortar; 𝜈𝜈𝑖𝑖 is the Poisson’s ratio of 

the mortar; and 𝑌𝑌�𝑖𝑖𝑠𝑠 is an equivalent modulus for the mortar-steel platen system defined as: 

 1
𝑌𝑌�𝑖𝑖𝑠𝑠

= �
1 − 𝜈𝜈𝑖𝑖2

𝑌𝑌𝑖𝑖
+

1 − 𝜈𝜈𝑠𝑠2

𝑌𝑌𝑠𝑠
� (4-11) 

𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑠𝑠 are the elastic moduli of the mortar and steel platens, respectively; 𝜈𝜈𝑖𝑖 and 𝜈𝜈𝑠𝑠 are 

the Poisson’s ratios of the mortar and steel platens, respectively. 
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For a sphere, the displacement at failure is (Stronge 2000): 

 

𝛿𝛿𝑆𝑆𝐿𝐿(𝑑𝑑) = �
9 ∙ 𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑)

2

𝑑𝑑 ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠
2 �

1/3

 (4-12) 

where 𝑑𝑑 is the sphere diameter; 𝑌𝑌�𝑖𝑖𝑠𝑠 is the equivalent modulus for the mortar-steel platen 

system as defined in Eq. (4-11); and 𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑)  is the force required to fail a sphere of diameter 

𝑑𝑑 under compression with a quasi-static loading rate.  

Using Eqs. (4-4), (4-10) and (4-12), and 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹, the displacement conversion 

factor can be expressed as:  

𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝛿𝛿 =
�

9 ∙ �𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)�
2

𝑑𝑑 ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠
2 �

1/3

4 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑) ∙ (1 − 𝜈𝜈𝑖𝑖2 )
𝜋𝜋 ∙ 𝑌𝑌𝑖𝑖 ∙ ℎ �0.41 + ln(2𝑑𝑑) − 0.5 ∙ ln �

2 ∙ 𝑑𝑑 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)

𝜋𝜋 ∙ ℎ ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠
��

 (4-13) 

Eqs. (4-10) and (4-12) are nonlinear equations, so it is not possible to obtain a closed 

form expression for the force and the equivalent modulus for the sphere and the disc. 

Consequently, the displacement conversion factor is a function of the forces required to 

obtain failure of the sphere and the disc. 

 

4.2.3 Shape conversion factor 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Finally, the shape conversion factor 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 can be derived by inserting Eq. (4-13) in 

Eq. (4-7) and using 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝐹𝐹 = 1.41 (see Section 4.2.1): 

𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎

=
0.92 ∙ 𝜋𝜋 ∙ 𝑌𝑌𝑖𝑖 ∙ ℎ

𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)
1/3 ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠

2/3 ∙ (1 − 𝜈𝜈𝑖𝑖2 ) ∙ 𝑑𝑑1/3 ∙ �0.41 + ln(2𝑑𝑑) − 0.5 ∙ ln �
2 ∙ 𝑑𝑑 ∙ 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)

𝜋𝜋 ∙ ℎ ∙ 𝑌𝑌�𝑖𝑖𝑠𝑠
��

 (4-14) 
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4.3 Derivation of size conversion factor 
Frossard et al. (2012) proposed a relationship to account for the size effect that 

affects the amount of force required to crush mineral particles. Considering the diameter 𝑑𝑑 

of the spheres tested in quasi-static compression and noting that 𝐷𝐷 is the diameter of spheres 

used in the drop tests (see Figure 4-1), the relation established by Frossard et al. (2012) is 

expressed as: 

 
𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷) = 𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑) �

𝐷𝐷
𝑑𝑑�

2− 3
𝜇𝜇𝐵𝐵𝐵𝐵−𝐹𝐹

 (4-15) 

where 𝜇𝜇𝐵𝐵𝑇𝑇−𝐹𝐹 is the Weibull distribution parameter for the distribution of crushing forces, 

here to be taken as force at failure for Brazilian tests on discs. 

The work done to break the sphere is proportional to the force at failure and the 

reduction in diameter of the sphere. So, for any sphere of diameter 𝐷𝐷: 

 𝑊𝑊 ∝  𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷) ∙ 𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷) (4-16) 

From Eq. (4-12) it follows that: 

 

𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷) ∝
�𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷)�

2
3

(𝐷𝐷)
1
3

 (4-17) 

and consequently: 

 

𝑊𝑊 ∝  𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷) ∙
�𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷)�

2
3

 (𝐷𝐷)
1
3

=
�𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷)�

5
3

 (𝐷𝐷)
1
3

 (4-18) 

Eq. (4-18) holds for all sizes. Noting that 𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷) is the work required to fail a sphere 

of diameter 𝐷𝐷 and 𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) is the work required to fail a sphere of diameter 𝑑𝑑, and given Eq. 

(4-15), we get: 
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𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷) ∝  
�𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷)�

5
3

 (𝐷𝐷)
1
3

=
�𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑) �

𝐷𝐷
𝑑𝑑�

2− 3
𝜇𝜇𝐵𝐵𝐵𝐵−𝐹𝐹�

5
3

 (𝐷𝐷)
1
3

=
�𝐹𝐹𝑆𝑆𝐿𝐿(𝑑𝑑)�

5
3

 (𝑑𝑑)
1
3

�
𝐷𝐷
𝑑𝑑�

�3− 5
𝜇𝜇𝐵𝐵𝐵𝐵−𝐹𝐹

�

 

 

 

 
⟹𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷) = 𝑊𝑊𝑆𝑆𝐿𝐿(𝑑𝑑) �

𝐷𝐷
𝑑𝑑�

�3− 5
𝜇𝜇𝐵𝐵𝐵𝐵−𝐹𝐹

�

 (4-19) 

where the size factor 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎 is now given by 

 
𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎 = �

𝐷𝐷
𝑑𝑑�

�3− 5
𝜇𝜇𝐵𝐵𝐵𝐵−𝐹𝐹

�

 (4-20) 

Eq. (4-20) allows to convert the work required to fail a sphere of diameter 𝑑𝑑 in quasi-

static compression into the work required to fail a larger sphere (of diameter 𝐷𝐷) under the 

same testing conditions. 

 

4.4 Derivation of rate conversion factor  
4.4.1 Estimation of the strain rate difference 

All Brazilian tests were conducted under quasi static conditions, with an average time 

to reach failure of 30 seconds. In contrast, the average recorded duration of impact for a 

dropped sphere is a fraction of millisecond. 

The radial strain of spheres and discs are of the same order of magnitude so that the 

increase in strain rate (here noted 𝐼𝐼𝐼𝐼𝑅𝑅) between the quasi-static testing and dynamic testing 

is simply taken as the ratio of loading times, assuming that half of the impact time (𝑡𝑡𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 ) 

corresponds to the compression phase, and half to the rebound phase: 

 𝐼𝐼𝐼𝐼𝑅𝑅 =
𝑡𝑡𝐵𝐵𝑇𝑇

𝑡𝑡𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 /2
 (4-21) 
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where 𝑡𝑡𝐵𝐵𝑇𝑇 is the time to reach failure in a quasi-static Brazilian test and 𝑡𝑡𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅  is the 

duration of impact (including the compression phase and restitution phase) for a drop test 

(cf. Figure 3-10). 

 

4.4.2 Rate conversion factor for force 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 
Wu et al. (2012) conducted series of dynamic indirect tensile tests on concrete cubes. 

Their data was used to establish the following empirical correlation between the rate 

conversion factor for force and the increase in strain rate:  

 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 =  𝐼𝐼𝐼𝐼𝑅𝑅0.055 (4-22) 

Hence, the dynamic force 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) can be calculated as: 

 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) = 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 ∙ 𝐹𝐹𝑆𝑆𝐿𝐿(𝐷𝐷) (4-23) 

 

4.4.3 Rate conversion factor for displacement 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 
As per Section 4.2.2, the dynamic displacement conversion factor is obtained from 

Hertzian contact theory (Stronge 2000). Under the impact force at failure, the compression 

displacement of a sphere of diameter 𝐷𝐷 is given by Eq. (4-12) (with 𝐷𝐷 instead of 𝑑𝑑). When 

the same sphere falls onto a flat concrete slab, generating a dynamic force 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷), the total 

deformation of the mortar sphere and the concrete slab, at the point of impact, can be 

estimated as (Stronge 2000): 

 
𝛿𝛿𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) = 𝛼𝛼 ∙ �

9 ∙ 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷)
2

8 ∙ 𝐷𝐷 ∙ 𝑌𝑌�𝑖𝑖𝑐𝑐
2 �

1/3

 (4-24) 

where 𝐷𝐷 is the diameter of the sphere used in drop test;∙ 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷)  is the force required to fail 

the sphere under a dynamic impact; 𝑌𝑌�𝑖𝑖𝑐𝑐 is an equivalent modulus for the mortar-concrete 

slab system; and 𝛼𝛼 is a factor used to estimate the part of deformation that occurs in the 

sphere. 

In absence of an analytical solution to estimate the partition of deformation in the 

sphere and deformation in the slab, 𝛼𝛼 has been approximated from the moduli of the sphere 

and the slab, noted 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑐𝑐. Considering the sphere and the slab as materials in series, and 
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based on the values of their moduli only, the portion of sphere deformation can be 

approximated as 𝑌𝑌𝑐𝑐/(𝑌𝑌𝑖𝑖 + 𝑌𝑌𝑐𝑐). However, this is not strictly correct as the reduction in 

diameter and the indentation of the slab depend on the size of the deformed objects. The 

same proportionality idea can be applied to the sphere and slab stiffness (equal to the moduli 

multiplied by the diameter of the sphere or the thickness of the slab), which accounts for 

dimensions. However, this is not totally correct either, because the deformation of the slab 

is localised, and the full thickness of the slab is not mobilised in compression. So, the average 

between the two approaches was taken as a first approximation of 𝛼𝛼. 

The equivalent modulus for the mortar-concrete slab system 𝑌𝑌�𝑖𝑖𝑐𝑐 is defined as  

 1
𝑌𝑌�𝑖𝑖𝑐𝑐

= �
1 − 𝜈𝜈𝑖𝑖2

𝑌𝑌𝑖𝑖
+

1 − 𝜈𝜈𝑐𝑐2

𝑌𝑌𝑐𝑐
� (4-25) 

where 𝑌𝑌𝑖𝑖 and 𝑌𝑌𝑐𝑐 are the elastic moduli of the mortar and concrete slab system, respectively; 

𝜈𝜈𝑖𝑖 and 𝜈𝜈𝑐𝑐 are the Poisson’s ratios of the mortar and concrete slab system, respectively. 

The theoretical dynamic displacement conversion factor 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 can be obtained as 

ratio of 𝛿𝛿𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) (Eq. (4-24)) over 𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷) (Eq. (4-12)) by expressing 𝐹𝐹𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷) by Eq. (4-23) 

and Eq. (4-22): 

 
𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 =

𝛿𝛿𝐷𝐷𝐷𝐷𝑁𝑁(𝐷𝐷)

𝛿𝛿𝑆𝑆𝐿𝐿(𝐷𝐷)
=
𝐼𝐼𝐼𝐼𝑅𝑅0.0367

2 
∙ 𝛼𝛼 ∙ �

𝑌𝑌�𝑖𝑖𝑠𝑠

𝑌𝑌�𝑖𝑖𝑐𝑐
�
2/3

 (4-26) 

 

4.4.4 Rate conversion factor 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎 
As for the shape conversion factor, the rate conversion factor is obtained from the 

product of the rate conversion factor for force and the rate conversion factor for 

displacement.  

 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎 = 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 ∙ 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 (4-27) 

Combining Eq. (4-22) and Eq. (4-26) gives: 

 
𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎 =  

𝐼𝐼𝐼𝐼𝑅𝑅0.092

2
∙ 𝛼𝛼 ∙ �

𝑌𝑌�𝑖𝑖𝑠𝑠

𝑌𝑌�𝑖𝑖𝑐𝑐
�
2/3

 (4-28) 
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5 Experimental methods 

5.1 Material and preparation of specimens 
In order to eliminate some inherent complexities of natural rock and irregularly 

shaped blocks and to achieve a better control and repeatability of results, fragmentation was 

here studied using homogeneous spherical samples made of mortar. The mortar was made 

of silica sand, Portland cement, hydrated lime and water. Three different proportions (by 

mass) were used to obtain different mortar strengths. A total of four mixtures were made: 

o For the first mixture (referred to as M1) the relative proportions were 3 parts of sand 

for 1 part of cement, 0.25 part of lime and 0.8 part of water. With this mixture a total 

2 batches were made. Each batch was used to cast 30 spheres of 100 mm diameter, 

5 cylinders (54 mm diameter, 135 mm height), 5 discs (54 mm diameter, 27 mm 

thickness) and 2 larger cylinders (100 mm diameter, 200 mm height). The two batches 

were subjected to a different curing process. The specimens of the first batch were 

cured for 8 weeks in a water bath at room temperature and then placed in a 40°C 

oven for 4 weeks for drying. This process led to a 90-day compressive strength of 

34.4 MPa. The specimens of the second batch were cured for 12 weeks in a water 

bath in the same condition and subsequently dried for 4 weeks, leading to a 120-day 

compressive strength of 40.7 MPa. To differentiate the first batch from the second, 

it will be referred to as M1 and M1*, respectively. The spheres of M1 were used to 

investigate the energy partition at different impact energies while the spheres from 

M1* were used to validate the experimental setup. 

o For the second mixture (referred to as M2) the relative proportions were 3 parts of 

sand for 1 part of cement, 0.25 part of lime and 1 part of water. This mixture has the 

same curing process of M1 (i.e. 8 weeks in a water bath at room temperature and 

then placed in a 40°C oven for 4 weeks for drying), which led to a 90-day compressive 

strength of 22.9 MPa. For mortar M2, a total of 4 batches were made. Each batch 
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was used to cast 30 spheres for each one of three diameters (50, 75 and 100 mm), 30 

cylinders (54 mm diameter, 135 mm height), 30 discs (54 mm diameter, 27 mm 

thickness) and 10 larger cylinders (100 mm diameter, 200 mm height). This mix was 

used to validate the novel model to predict the impact survival probability from 

statistical distribution of material properties presented in Chapter 4. 

o For the third mixture (referred to as M3) the proportions were 4 parts of sand for 1 

part of cement, 0.25 part of lime and 1 part of water. This mixture has the same 

curing process of M1 and M2 (8 weeks in a water bath at room temperature and then 

placed in a 40°C oven for 4 weeks for drying), leading to a 90-day compressive 

strength of 17.3 MPa. For M3, only 30 spheres of 100 mm, 10 cylinders (54 mm 

diameter, 135 mm height) and 10 discs (54 mm diameter, 27 mm thickness) were 

made for each batch because specimens of mortar M3 were used to validate a specific 

aspect of the novel model (see Section 6.4.5). A total of 4 batches were also made for 

this mix. 

The spheres were cast using 3D printed plastic (high density acrylonitrile butadiene 

styrene) moulds (see Figure 5-1). The moulds were designed to optimise the printing, to 

maximise the number of spheres per mould and to obtain an efficient alignment system of 

two half moulds in order to reduce the imperfections caused by the filling. The moulds were 

filled on a vibrating table to expel as many bubbles as possible from the mortar. Note that 

the filling hole of the moulds were closed with a concave plug that maintains the spherical 

shape (Figure 5-1b and c).  

All specimens (spheres, discs and cylinders) were removed from their mould after 1 

day and cured in a water bath at room temperature for 8 weeks, except for the M1* samples 

that were cured for 12 weeks. Following curing, all specimens were placed in a 40°C oven 

for 4 weeks for drying, thereby eliminating any strength variability due to differential wetness 

at the time of testing. 
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Figure 5-1: (a) 3D printed moulds used to create the spheres (assembled; filling holes unplugged); (b) example of 
mould open and zoom of the plug used to maintain the spherical shape; (c) moulds filled with mortar and plugged; 

(d) examples of the mortar spheres cast using the moulds. 

 

5.2 Characterisation testing 
The mechanical characteristics of the four mortars were assessed via the following 

series of material characterisation tests: 

• unconfined compression tests on mortar cylinders (diameter 54 mm, height 135 mm, 

Figure 5-2 left) conducted according to standard ISRM 1979 (Bieniawski and 

Bernede 1979). 

• indirect tension tests (also called Brazilian tests) on mortar discs (diameter 54 mm, 

thickness 27 mm, Figure 5-2centre) conducted according to standard ISRM 1978 

(ISRM 1978) 

• toughness tests (Mode I) on mortar half-discs (diameter 100 mm, thickness 40 mm, 

Figure 5-2 right) notched with a central groove (height 25 mm, thickness 1.7 mm) 

conducted according to standard ISRM 2014 (Kuruppu et al. 2014). The disc 

specimens for the toughness tests were created by cutting slices from the 100 mm 

diameter, 200 mm height cylinders. Each disc was then separated into two halves and 

a groove was precisely cut in each half. 
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• quasi-static compression test of mortar spheres (only for M2, diameters of 50, 75 and 

100 mm) conducted under the same conditions as the indirect tension tests 

performed on the discs. 

All these characterisation tests were conducted under quasi-static loading (loading 

rate ranging from 0.15 to 2.4 mm/min). The number of tests performed for each mix is 

reported in Table 5-1. 

Table 5-1 Number and type of material characterisation tests for each mortar mix (M1, M1*, M2, M3). 

 M1 M1* M2 M3 

Unconfined compression tests (UCS) 5 5 117 40 

Brazilian tests on discs (BT) 5 5 119 40 

Toughness tests 10 10 107 - 

Compression tests on 50 mm spheres  - - 11 - 

Compression tests on 75 mm spheres - - 11 - 

Compression tests on 100 mm spheres  - 11 - 

 

 

Figure 5-2: Typical specimens for the material characterisation tests: on the left, cylinder for unconfined 
compression test (50 mm in diameter), in the centre a disc for Brazilian test (50mm diameter) and on the right a 

notched half-disc (100 mm diameter) for toughness test. 

As discussed in Chapter 4, it is here proposed to relate the survival probability for 

drop tests to the material variability highlighted from the characterisation tests. For each test, 

the statistical distribution of raw force at failure and processed force (i.e. strength or 

toughness) was determined.  
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5.3 Experimental program for drop tests and tracking tests 
The experimental program pertaining to drop tests and tracking tests consists of four series: 

 Series 1 (S1) contains all tests used to validate the experimental setup: 

 Series 1.1 (S1.1) focused on tests to assess the influence of geometry (or shape) of 

the tracked object, the number of viewpoints used and the method of 3D 

representation of the object on the accuracy of the 3D tracking outcomes.  

To investigate the ability of the algorithm to track different shapes, a brick 

(dimensions of 75 x 109 x 229 mm, volume 1,872 cm3, Figure 5-3a), a disc (diameter 

of 100 mm, height of 49 mm, volume 385 cm3, Figure 5-3b) and an irregular fragment 

from a broken 100 mm sphere (volume 130.9 cm3, Figure 5-3c) were suspended from 

a string and spun around the vertical axis at a known rotational velocity. These tests 

are referred to as “spinning tests” in the rest of this thesis. 

 

Figure 5-3: Blocks used for the spinning tests: (a) brick, (b) disc and (c) the fragment. 

Also, two drop tests were conducted with a natural sandstone rock block (Figure 

5-4a) and a mortar sphere (M1*, Figure 5-4b) in order assess the ability of the setup 

to capture the 3D trajectory of objects. The sandstone block with a mass of 2.963 kg 

and volume of 1,279 cm3 was released from about 1.65 m. It had an irregular shape 

with a plane of discontinuity. The mortar sphere (diameter 100 mm and mass 1.002 

kg) was dropped from about 3.1 m. 
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Figure 5-4: Natural sandstone block (a) and mortar sphere (b) used to validate the ability of the setup to capture 
3D trajectories. 

As previously discussed, the current setup is equipped with four cameras and two 

mirrors, which allow a view of the impact to be captured from six different 

viewpoints (see Figure 3-1 and Figure 3-4). This arrangement was found to be 

adequate to achieve satisfactory accuracy in tracking by following a systematic 

analysis of the effect of different combinations of viewpoints (V) and number of 

cameras, as summarised in Table 5-2. 

Table 5-2 Combination of views and number of cameras used for series S1.1  

Viewpoints (V) Numbers of cameras Arrangement 

V1-V2 2 2 planar views 

V3-V4 2 2 views (side-top) 

V1-V2-V3 3 3 planar views 

V2-V3-V4 3 3 ortho views 

V1-V2-V3-V4 4 4 views 

V1-V2-V3-V4-V5-V6 4 + 2 mirrors 6 views 

 

Finally, the effect of accurately capturing the shape of the object (via the visual hull 

resolution and the new algorithm to identify axes of rotation) was investigated as part 

of series S1: VH resolution values of 1, 3, 6 and 10 were used (note: the lower the 

VH number, the finer the mesh used to reconstruct the object). The VH resolution 

strongly affects the processing time since a small value means a very fine mesh and a 

higher computational time. The developed post-processing algorithm (Guccione et 

al. 2020) was applied to the spinning tests and compared to tracking obtained with 

TEMA3D. 

The results of this series (S1.1) are discussed in Section 6.2.1. 
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 Series 1.2 (S1.2) focused on the validation of the methodology to evaluate the impact 

force and impulse from load cells placed under the impacted surface. Spheres (using 

mortar M1*) were dropped onto a load cell (LPX compression disk of 50 kN 

capacity) placed on top of the impact slab (Figure 5-5a) providing a direct 

measurement of the impact force (𝐹𝐹𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅��������� where the bar denotes a measured value 

as opposed to 𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅, which is a predicted value), impact duration and impulse 

(𝐽𝐽𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������) at the point of impact, for each test. These measured parameters were 

compared to the estimated impact force and impulse using the methodology 

presented in Section 3.2.1. Seven drop heights were selected, and 3 drop tests were 

performed at each height for a total of 21 tests. For this series of tests, unfragmented 

spheres were re-used until they broke, or until they had survived 5 drops, after which 

they were discarded, and new spheres were used. It is here acknowledged that when 

surviving the impact, it is possible that the spheres have sustained some non-visible 

local damage (micro-cracks); however, multiple testing showed that such damage 

does not influence the magnitude of impact force generated by the impact. 

 Series 1.3 (S1.3) focused on the validation of the methodology to evaluate the impact 

force and impulse from load cells placed under the impacted surface using the final 

setup where spheres (here for mortar M1*) were dropped onto the I-scan pressure 

sensor, placed directly on the impact slab (Figure 5-5b). The same seven drop heights 

of S1.2 were selected, and 3 drop tests were performed at each height for a total of 

21 tests. 

Results of S1.2 and S1.3 were used to determinate the deformability of slab and load cells 

system (𝑘𝑘,𝑌𝑌𝑐𝑐). These results are reported in Section 6.2.2. The validation of the 

methodology to estimate impact force and impulse is discussed in Section 6.2.3. 
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Figure 5-5: (a) Typical drop test of series S1.2 with top load cell (LC top). (b) Typical drop test of series S1.3 with 
pressure sensor.  

 

 Series 2 (S2) pertains to all tests conducted to investigate the impact survival probability 

of artificial rock blocks and validate the novel prediction model (presented in Chapter 

4) based on statistical distribution of material properties: 

 Series 2.1, 2.2 and 2.3 (using mortar M2) were conducted to establish the impact 

survival probability of 50, 75 and 100 mm diameter spheres, respectively. Five drop 

heights were selected, and 16 spheres were dropped at each height, which represents 

80 drop tests per impact survival probability. 

 Series 2.4 (using mortar M3) was used to establish the impact survival probability for 

a mortar of different strength, for 100 mm diameter spheres only, and from the 

statistical information coming from a reduced number of Brazilian tests. Like other 

series of S2, 5 drop heights were selected, and 16 spheres were dropped at each 

height.  

The results of S2 are discussed in Section 6.3 and 6.4. 

 Series 3 (S3) focuses on quantifying the amount of energy dissipated at impact for 

different values of impact energy and is made of:  

 Series 3.1 (S3.1) where 10 drop tests from series S1.3 representing three different 

outcomes (rebound without damage, rebound with damage and fragmentation) were 

analysed in detail. All energy components were estimated from the tracking and 

impact data with an emphasis on verifying that all significant dissipative components 

can be captured, and that the energy balance can be computed reliably. 

 Series 3.2 (S3.2) where 24 tests were conducted from six different drop heights. For 

each height, 4 spheres of 100 mm diameter (using mortar M1) were used. All energy 

components were estimated from the tracking and impact data with an emphasis on 
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the possible changes in energy partitioned between dissipation mechanisms with 

increasing impact energy. In this series, only cases with fragmentation were analysed. 

The results of these series are presented in Section 6.5. 

 Series 4 (S4) focused on fragment size distribution in a range of impact velocities 

between 7.8 m/s and 21 m/s (drop height between 3.1 m and 22.5 m). A total of 30 

tests were conducted at ten different drop heights. For each height, 3 spheres of 100 

mm diameter (using mortar M1) were used. This series of tests were performed using 

the secondary setup described in Section 3.3. The fragments produced at each impact 

were counted and weighed down to a mass of 0.1 g. The results of this series are 

presented in Section 6.3.2 

Table 5-3 summaries the test parameters of the spinning tests of S1.1, while Table 

5-4 summaries the test parameters of drop tests of all the tests series. 

 

Table 5-3 Summary of test parameters of spinning tests of S1.1. 

Series Objective of the Series Material used 
Number 

of tests 

Reference rotational 

velocity [rad/s] 

S1.1 

Influence of number of views and object 

shape on 3D rotational velocity estimation 

Masonry brick, 

mortar disc and 

fragment  

3 11.99, 40.53, 37.46 

Influence of VH resolution and validation of 

the new post processing algorithm to estimate 

3D rotational velocity 

Masonry brick 

and fragment  
2 11.99, 37.46 
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Table 5-4 Summary of test parameters of all Series except spinning tests of S1.1. 

Series Objective of testing 

Material used 

(sphere 

diameter) 

Number 

of tests 

Drop height 

[m] 

Theoretical 

impact 

velocity [ms-1] 

S1.1 
Validation of 3D trajectory 

estimation 

Sandstone 1 1.65 5.7 

M1* (100 mm) 1 3.06 7.8 

S1.2 
Validation of the impact 

force and impulse estimation 
M1* (100 mm) 21 

0.20, 0.46, 0.82, 

1.27, 1.83, 2.5, 

3.06 

2, 3, 4, 5, 6, 7, 7.8 

S1.3 
Validation of the impact 

force and impulse estimation 

using the final setup  

M1* (100 mm) 21 

0.20, 0.46, 0.82, 

1.27, 1.83, 2.5, 

3.06 

2, 3, 4, 5, 6, 7, 7.8 

S2.1 
Validation of the novel 

model to predict the 

fragmentation SP 

M2 (50 mm) 80 
2.15, 2.5, 2.87, 

3.26 3.68 
6.5, 7, 7.5, 8, 8.5 

S2.2 
Validation of the novel 

model to predict the 

fragmentation SP 

M2 (75 mm) 80 
1.54, 1.83, 2.15, 

2.5, 2.87 
5.5, 6, 6.5, 7, 7.5 

S2.3 
Validation of the novel 

model to predict the 

fragmentation SP 

M2 (100 mm) 80 
1.27, 1.54, 1.83, 

2.15, 2.5 
5, 5.5, 6, 6.5, 7 

S2.4 
Validation of the novel 

model to predict the 

fragmentation SP 

M3 (100 mm) 80 
1.19, 1.27, 1.54, 

1.83, 1.94 

4.83, 5, 5.5, 6, 

6.17 

S3.1 
Validation of energy 

computation 
M1* (100 mm) 10 

0.46, 0.82, 1.27, 

1.83, 2.5, 3.06 
3, 4, 5, 6, 7, 7.8 

S3.2 
Investigation of energy 

partition  
M1 (100 mm) 22 

1.54, 1.83, 2.15, 

2.5, 3.06, 5.10 

5.5, 6, 6.5, 7, 7.8, 

10 

S4 
Investigation of fragment 

size distribution 
M1 (100 mm) 29 

3.12, 4.59, 6.12, 

7.92, 8.75, 12.35, 

13.39, 15.93, 

18.39, 22.43 

7.8, 9.5, 11, 12.5, 

13.1, 15.6, 16.2, 

17.7, 19, 21 
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6 Results 

6.1 Material characterisation 
As mentioned in Chapter 5 (see Table 5-1), comprehensive testing was conducted to 

characterise the four mortar mixtures, whose key properties are reported in Table 6-1. 

Table 6-1 Characteristics of mortar M1, M1*, M2 and M3. 

Material Density 𝝆𝝆𝟏𝟏 
[g/cm3] 

Unconfined 
compressive 

strength1 𝝈𝝈𝒄𝒄 [MPa] 

Elastic 
modulus 
𝒀𝒀𝒎𝒎 [MPa] 

Poisson’s 
ratio2 𝝂𝝂𝒎𝒎 

Tensile 
strength 𝝈𝝈𝒕𝒕 

[MPa] 

Fracture 
toughness 

𝑲𝑲𝑰𝑰𝒄𝒄 [MPa*m0.5] 
M1 1.947 

±0.031 
34.67 
±1.46 

7364.65 
±430.67 

0.20 3.59 
±0.62 

0.433 
±0.091 

M1* 1.932 
±0.016 

40.73 
±1.00 

7514.97 
±166.12 

0.20 3.86 
±0.28 

0.674 
±0.087 

M2 1.833 
±0.024 

22.90 
±1.16 

6055.04 
±309.01 

0.20 1.94 
±0.24 

0.436 
±0.064 

M3 1.852 
±0.032 

17.30 
±1.53 

6412.05 
±632.34 

0.20 1.81 
±0.21 

n.a. 

Notes: 
1 Value referred to after the curing and drying process: 

• M1, M2, M3 after 12 weeks 
• M1* after 16 weeks 
 

2 Presumed value 
 

 

For mortars M2 and M3, a higher number of samples were used to characterise the 

material and highlight the material variability, since it is a key parameter of the novel model 

developed to predict the impact survival probability presented in Chapter 4.  

The variability in mechanical properties is clearly revealed by the statistical 

distributions plotted in Figure 6-1 for both materials (M2 and M3). Interestingly, the 

variability exists despite the very meticulous preparation and curing processes applied to all 

specimens. There is almost a factor 2 between the lowest value and the highest value for 

tensile strength (obtained either from discs or spheres) and toughness (Mode I) for M2. By 

contrast, there is far less variability on the unconfined compressive strength. This is 
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consistent with numerical findings of Nader et al. (2021) who showed that tensile strength 

was more sensitive to the presence of micro defects than the compressive strength, which 

seems to be closely related to the failure mechanism. It is relevant to note that, for all 

parameters, the survival probability tends to follow a Weibull distribution, as indicated by 

the very high values of goodness of fit. This is also the case for the distribution of work 

required to fail mortar cylinder under indirect tension, as illustrated in Figure 6-2. The value 

of work corresponding to a 37% survival probability (i.e. 0.663 J for M2 and 0.510 J for M3) 

provides the required estimate of the critical work 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟 . 

 

Figure 6-1: Experimental survival probability of (a) tensile stress obtained from Brazilian test on a disc (from M2 
and M3), (b) unconfined compressive strength (from M2 and M3), (c) Mode I toughness (M2) and (d) tensile 

stress obtained from compression test on spheres of different diameters (50, 75 and 100 mm for M2). Crosses and 
triangles represent the experimental data of M2 and M3, respectively, while continuous lines represent the 

Weibull best fit (as per Eq. (4-1)) with goodness of fit indicated by the 𝑅𝑅2 value. 
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Figure 6-2: Experimental survival probability of work required to fail a cylinder under indirect tension (Brazilian 
test). Crosses and triangles represent the experimental data of M2 and M3, respectively, while continuous lines 
represent the Weibull best fit (as per Eq. (4-1)) with goodness of fit indicated by the 𝑅𝑅2 value. The dashed lines 

indicate the critical work, corresponding to a survival probability of 37%. 

 

For each test, it is possible to plot the survival probability in terms of force, stress 

(or toughness) and work, and to infer the corresponding shape parameter of the Weibull 

distribution (𝜇𝜇). Table 6-2 presents the values of Weibull shape parameter for all survival 

probabilities for both materials. A large variation of 𝜇𝜇 values appear between one type of test 

and another and, for a given test, between one parameter and another. However, it seems 

that the 𝜇𝜇 values of work are consistently lower than the 𝜇𝜇 values for force, stress or 

toughness and that the 𝜇𝜇 values for unconfined compression are the highest (exceeding 20 

for M2), denoting a lower degree of variability, which is consistent with Figure 6-1. In 

contrast, the 𝜇𝜇 values for force or stress/toughness lie in the range 6.5 to 10.2. Interestingly, 

the Weibull shape parameter of the work distribution seems to depend on the sphere 

diameter: the larger the sphere, the lower 𝜇𝜇. This would make sense for a natural material 

where a larger specimen might be expected to contain more defects, but it is unclear, at this 

stage, if the same should apply for the artificially created mortar specimens used in this study. 

Compared to M2, M3 presents a higher variability of unconfined compression test results 

but a lower variability of Brazilian tests results, which, at this stage, cannot be explained. 
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Table 6-2 Weibull shape parameter 𝜇𝜇 from the distribution of force, stress/toughness or work at failure for 
unconfined compression tests, Brazilian tests on disc, quasi-static compression on spheres and toughness tests. 

Values of Weibull Shape Parameter 𝝁𝝁 
Force at failure Stress or toughness Work at failure 

M2 M3 M2 M3 M2 M3 

Unconfined compression tests 20.2 13.8 24.1 13.7 8.2 8.9 

Brazilian tests on discs 8.9 10.2 9.8 10.3 4.2 6.2 

Compression tests on 50 mm spheres 6.6 - 6.5 - 6.2 - 

Compression tests on 75 mm spheres 10.1 - 10.2 - 5.2 - 

Compression tests on 100 mm 

spheres 
8.0 - 8.0 - 4.5 - 

Toughness tests 8.0 - 8.3 - 4.2 - 

 

6.2 Validation of the experimental setup 
6.2.1 Tracking accuracy  

The experimental setup has six different viewpoints as described in Section 3.1.3, 

coming from four high-speed cameras and two mirrors. Several factors can influence the 

tracking accuracy, the most critical being the number and location of viewpoints, the block 

geometry and the resolution of the visual hull for the outline tracking algorithm. In this 

section, the influence of these parameters, with particular attention on those influencing the 

calculation of the rotational velocity, is discussed. 

 

Influence of number of views and object shape on accuracy of estimated rotational velocity 

As presented in Table 5-3, in order to assess the effect of the number of views on 

tracking accuracy, a brick (Figure 5-3a) was rotated around an axis of rotation very close to 

the third axis (i.e. shortest axis) at a velocity of 11.99 rad/s and the images were processed 

using the different combinations of views that were presented in Table 5-2. 

Figure 6-3a to c show the cumulative rotation angles around the three principal axes 

with time, from which the rotational velocity can be estimated by fitting a linear trend 

through the data points, for each principal axis.  

For the first and second axis (Figure 6-3a and b), regardless of the number of views, 

the derived rotational velocity is low, which is consistent with the test conditions. The more 

views, the less rotation is inferred and the closer the recorded rotation is to the real rotation 
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(close to zero). Notably, when using only two cameras, the position of these cameras affects 

the rotation recorded (see red and green lines in Figure 6-3b and c).  

For this type of tests, most of the rotation occurs around the third axis and Figure 

6-3c suggests that all combinations, other than 2 views in a plane perpendicular to the axis 

of rotation, can reasonably track the rotational velocity. However, when comparing the 

volume computed by TEMA3D to the real object volume (Figure 6-3d), it is clear that 6 

views deliver the best outcome and the volume computed from 2 planar views gives greater 

fluctuation with values deviating from the real volume. Note that the fluctuations in volume 

come from the visual hull approach (which will always over-estimate the volume) as the 

intersection of silhouette cones changes with time. Both over-estimations and fluctuations 

in volume are exacerbated when not enough views are used (as per Figure 6-4).  

 
Figure 6-3: Rotating brick: influence of viewpoints on the cumulative rotation angle around (a) the main principal 
axes, (b) the second principal axes and (c) the third principal axes, over time. (d) the brick’s volume computed by 

the VH algorithm as a function of time. VH resolution equal to 1 (fine mesh). 

In Figure 6-4 are screenshots of the VH generated by TEMA3D using the different 

viewpoints, which corroborates the findings of Figure 6-3d in the sense that the shape 

obtained by 2 planar views (at some point of the rotation) can be very different from the real 
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shape. In contrast, the other view combination yield a shape that is quite close to the real 

shape.  

 

 

Figure 6-4: Brick influence of viewpoints: (a) physical viewpoints, (b) image of the brick taken from V4 
corresponding at time 0.174s in Figure 6-3 and corresponding visual hull (VH) from a top view using (c) 2 planar 

views, (d) 2 views (side-top), (e) 3 planar views, (f) 3ortho views, (g) 4 views and (h) 6 views. 

 

In another test, a disc (Figure 5-3b) was rotated around the third axis at a velocity of 

41.89 rad/s. Due to the axisymmetry of the object, it was not possible to get a reliable 

estimation of rotational velocity using the VH algorithm (Figure 6-5) as the cumulative 

rotation angles around the three axes are all fluctuating around zero (Figure 6-5a to c). On 

the other hand, the estimation of the volume is quite accurate, because of the simple 

axisymmetric shape of the object.  This test highlights the fact that the outline tracking 

algorithm is not accurate for an axisymmetric object. The feature tracking algorithm was then 
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used to compute the rotational velocity with results shown in Figure 6-6. Tracking a feature 

point (P1) on the surface of the disk, and the centre of gravity, returned a rotational velocity 

of 40.53 rad/s, which is very close to the actual experimental value of 41.89 rad/s. 

 

Figure 6-5: Rotating disc: influence of viewpoints on the cumulative rotation angle around (a) the main principal 
axes, (b) the second principal axes and (c) the third principal axes over time. (d) volume of the disc computed by 

the VH algorithm as a function of time. VH resolution equal to 1 (fine mesh). 

 

 

Figure 6-6: Spinning test result on disc using feature tracking. Inset shows the disc and the two tracked points: 
centre of gravity (CofG) in the middle, and feature point (P1) on the outer cylindrical surface. 
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The third object tested was a fragment of a sphere (Figure 5-3c) rotated around an 

arbitrary axis of rotation, close to the third axis, at a velocity of 37.46 rad/s. The results are 

plotted in Figure 6-7 and show that two views are clearly insufficient to estimate the main 

component of rotational velocity. It takes at least three views to obtain a realistic estimate of 

rotational velocity. However, looking at the estimation of volume (Figure 6-7d), it is clear 

that six views are required if one needs an accurate estimate of both rotational velocity and 

volume.  

 

 
Figure 6-7: Rotating sphere fragment: influence of viewpoints on the cumulative rotation angle around (a) the 
main principal axes, (b) the second principal axes and (c) the third principal axes over time. (d) volume of the 

sphere fragment computed by the VH algorithm as a function of time. VH resolution equal to 1 (fine mesh). 

 

Based on the results of this section, it was decided that all drop tests in the 

fragmentation cell would be conducted with six views made of four cameras and two mirrors.  
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Influence of Visual Hull resolution on accuracy of estimated rotational velocity 

As discussed above, the tests conducted for this part of the study all use six views. 

Figure 6-8 to Figure 6-11 compare the outcomes of volumes derived from VHs meshed to 

different resolutions (VH01 corresponds to highest resolution whereas VH10 to lowest). 

Figure 6-8 and Figure 6-9 pertain to the brick while Figure 6-10 and Figure 6-11 pertain to 

the sphere fragment.  

Figure 6-8a to c show the evolution of cumulative rotation angle with time around 

the three axes while Figure 6-8d shows the evolution of the volume computed form the 

visual hull algorithm with time. Because of the large dimension and the regular shape of the 

brick, there is no influence of the VH resolution on the outcome of the test, which is 

corroborated by the visual hulls presented in Figure 6-9. The number of mesh elements 

(triangles) seem to affect the textural appearance of the object (compare texture of Figure 

6-9a to Figure 6-9d) but not the volume (Figure 6-8d). 

 

 
Figure 6-8: Rotating brick - 6 views: influence of VH resolution on the cumulative rotation angle around (a) the 
main principal axes, (b) the second principal axes and (c) the third principal axes over time. (d) Volume of brick 

computed by the VH algorithm as a function of time. 
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Figure 6-9: Brick influence of VH resolution: (a) VH01 (highest), (b) VH03, (c) VH06 and (d) VH10 (lowest). 

 

Unlike for the brick, the sphere fragment has an irregular shape and Figure 6-10 

shows that the VH resolution now clearly affects the accuracy of the rotational velocity 

(Figure 6-10a to c) and, in particular, no reliable estimation of rotational velocity can be 

obtained by using VH06 and V10. Like for the brick, the VH resolution still has little effect 

on the computed volume (Figure 6-10 d), which is corroborated by Figure 6-11, illustrating 

the scanned fragment shape and its VH approximations (VH01, VH03, VH06 and VH10). 

In conclusion, VH01 will be used to a better estimation of rotational velocities for small 

fragments. 



93 

 

 
Figure 6-10: Rotating sphere fragment - 6 views: influence of VH resolution on the cumulative rotation angle 

around (a) the main principal axes, (b) the second principal axes and (c) the third principal axes over time. (d) 
volume of sphere fragment computed by the VH algorithm as a function of time. 

 

 

Figure 6-11: Influence of VH resolution on inferred volume of sphere fragment i: (a) scanned shape, (b) VH01, (c) 
VH03, (d)VH06 and (e) VH10. 
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Influence of new post processing algorithm on accuracy of estimated rotational velocity 

The validation of the new post processing algorithm (Guccione et al. 2020), 

implemented to improve the calculation of rotational velocities, was also evaluated using the 

spinning tests of the brick and the fragment. Although it was previously concluded that six 

views should be used for all fragmentation tests, it is very likely that fragments will overlap 

in certain views, making those views unusable. Consequently, in this section, the new 

algorithm developed to track rotational velocity was compared to TEMA3D, both for four 

views and six views, in terms of evolution of cumulative rotational angle with time for the 

three principal axes.  

Figure 6-12a to f pertain to the brick while Figure 6-13a to f pertain to the fragment. 

In each case, sub-figures a to c correspond to four views while sub-figures d to f correspond 

to six views. Also, each sub-figures a to c correspond to one axis of rotation. As previously, 

rotation mainly occurs around the third axis with much smaller rotation around the first and 

second axes.  

When comparing the new post-processing method with the results from TEMA3D, 

we can observe more stable trends (i.e. less noise and less fluctuation) with the new post-

processing algorithm. This is especially so when the rotation velocity is low, around the first 

and second axes. There is no significant difference between four views and six views for a 

regularly shaped object like the brick.  

Table 6-3 summarises the computed rotational velocities around the main axes 

(𝜔𝜔𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼 ,𝜔𝜔𝐼𝐼𝐼𝐼𝐼𝐼), the absolute rotational velocity (𝜔𝜔) and the relative error (computed as 1 −

𝜔𝜔/𝜔𝜔𝑟𝑟𝑎𝑎𝑓𝑓). The new method shows estimated velocities closer (i.e. lower relative error) to the 

reference value, compared to the TEMA3D estimation for both four views and six views. 
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Figure 6-12: Rotating brick: comparison between the cumulative rotation angles around the principal axes 
calculated using TEMA3D and the new post-processing (PP) algorithm developed by Guccione et al. (2020). (a), 

(b) and (c) using 4 views and (d), (e) and (f) using 6 views. 

 

Table 6-3 Results of spinning brick (𝜔𝜔𝑟𝑟𝑎𝑎𝑓𝑓 = 11.99 rad/s) 

  
𝝎𝝎𝑰𝑰 [rad/s] 𝝎𝝎𝑰𝑰𝑰𝑰 [rad/s] 𝝎𝝎𝑰𝑰𝑰𝑰𝑰𝑰 [rad/s] 𝝎𝝎 [rad/s] Relative error 

4 
vi

ew
s TEMA -0.19 0.99 11.58 11.62 -3.06% 

After PP 2.10 1.00 11.65 11.88 -0.93% 

6 
vi

ew
s TEMA -0.12 0.55 11.63 11.64 -2.88% 

After PP 1.90 0.99 11.70 11.89 -0.81% 

 

For an irregular shape, it is again clear that the new post-processing algorithm 

provides a better estimate of rotational velocities (Figure 6-13). In particular, the error after 

post-processing of four views reduces by a factor of four (from 29.32% to 7.64%). This is a 

very important finding as in most of the cases not all six views will be available. A part from 

that it can be seen that, this time, there is an influence of the number of views with six views 

yielding more accurate values of rotational velocities (Table 6-4). 
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Figure 6-13: Rotating sphere fragment: comparison between the cumulative rotation angles around the principal 
axes calculated using TEMA3D and the new post-processing (PP) algorithm developed by Guccione et al. (2020). 

(a), (b) and (c) using 4 views and (d), (e) and (f) using 6 views. 

 

Table 6-4 Results of rotating sphere fragment (𝜔𝜔𝑟𝑟𝑎𝑎𝑓𝑓 = 37.46 rad/s) 

  
𝝎𝝎𝑰𝑰 [rad/s] 𝝎𝝎𝑰𝑰𝑰𝑰 [rad/s] 𝝎𝝎𝑰𝑰𝑰𝑰𝑰𝑰 [rad/s] 𝝎𝝎 [rad/s] Relative error 

4 
vi

ew
s TEMA 2.13 0.32 26.39 26.47 -29.32% 

After PP 8.37 4.04 33.32 34.59 -7.64% 

6 
vi

ew
s TEMA -1.26 3.51 35.35 35.55 -5.09% 

After PP 15.80 6.22 33.89 37.91 1.21% 

 

In conclusion, the proposed post-processing method seems to provide more accurate 

results, especially if less than six views are used, and will be employed to process all tracking 

results. 
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Preliminary tracking of trajectory pre- and post-impact  

To validate the tracking methodology, two preliminary drop tests were conducted: 

one using a sandstone block and one using a mortar sphere (M1*) (see Figure 5-4 and Table 

5-4). The reconstructed 3D trajectories were compared to theoretical trajectories: a free-fall 

(of known initial position and initial velocity) pre-impact; and a parabolic trajectory, 

contained in a single vertical plane, after impact.  

The sandstone block was dropped from a height of 1.65 m and did not break upon 

impact. Both translational and rotational components of trajectory post-impact were 

computed using six viewpoints. Figure 6-14 shows a sequence of images recorded from 

viewpoint V3 during that drop test (Figure 6-14a-c) and the corresponding processed data 

indicating the 3D trajectory and the estimated shape (Figure 6-14d-f). The coordinates of the 

centre of gravity (X,Y,Z) exported from the tracking are expressed in the global reference 

system represented in Figure 6-14d-f (X and Y are horizontal directions and Z is vertical) 

and are plotted in Figure 6-15. A linear fitting is used to determine the X and Y components 

of the translational velocity, whereas a second order polynomial (i.e. parabola) is used for the 

Z component. The 𝑅𝑅2 values reported on the figure represent the goodness of fit between 

the reconstructed trajectories (free fall and rebound) and the theoretical trajectories (parabola 

or straight line). It can be seen that 𝑅𝑅2 values are very close to 1, hence the measured 

trajectory of the block respects the expected physics motion laws. 

 
Figure 6-14: Drop test sandstone block (drop height 1.65 m, impact velocity 5.7 m/s). Sequence of images from 

V3: (a) free fall, (b) impact, (c) rebound and corresponding tracking results (d), (e) and (f) in 3D. 
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Figure 6-15: Tracking of drop test sandstone block: X,Y,Z components of the centre of gravity vs. time. 

 

The mortar sphere (specimen M1*) was dropped from a height of 3.1 m. Upon 

impact, the sphere broke into three fragments. Figure 6-16a shows an image of the sphere at 

the end of the free-fall recorded just before impact, with Cam 2 including view V2 and 

mirrored view V6. The corresponding VH of the sphere and the measured trajectory are 

shown in Figure 6-16b (in a vertical plane) and Figure 6-16c (in a horizontal plane). The free-

fall trajectory does follow a vertical line, as expected. The 𝑅𝑅2 values reported on the figures 

represent the goodness of fit between the reconstructed trajectories (or their projection on 

the vertical and horizontal planes on Figure 6-16) and the theoretical trajectories (parabola 

or straight line). 

Figure 6-16d shows an image of the fragments after impact, recorded with Cam 2 

including view V2 and mirrored view V6. The corresponding VH of these fragments and the 

measured trajectories are shown in Figure 6-16e (in a vertical plane) and Figure 6-16f (in a 

horizontal plane). In the side view (Figure 6-16e), the recorded trajectories were fitted with 

a parabolic equation returning 𝑅𝑅2 values of 0.999. Similarly, high values were computed and 

reflect the fact that each fragment trajectory is contained in a vertical plane (Figure 6-16f). 

Tracking the fragments confirmed the conclusion drawn after tracking the sphere: 

the methodology developed in this thesis allows for accurate capture of 3D trajectories of 

regular and irregular objects, in translation and rotation. 
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Figure 6-16: Results of trajectory tracking for drop test with mortar sphere (M1*). (a): Image of V2/V6 just before 
the impact with (b) corresponding tracking analysis and (c) visual hull from side view in vertical plane and top 

view in horizontal plane. (d): Image of V2/V6 after the impact with corresponding tracking analysis and (e) visual 
hulls from the side view in vertical plane; and (f) top view in horizontal plane. The 𝑅𝑅2 in (b) and (e) represents the 

coefficient of determination of a parabola fit of the trajectory in a vertical plane. 𝑅𝑅2 in (c) and (f) represents an 
average coefficient of determination of a linear fit of the trajectory projected on a horizontal plane. 
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6.2.2 Determination of the deformability of slab and load cells system 
Before elaborating on the results, recall that the concrete slab rests on three load 

cells. The system deformability can be inferred by plotting the slab reaction force (measured 

by the three bottom load cells) against slab displacement (inferred from the accelerometer), 

as per Figure 6-17. The relationship between force and displacement can be reasonably fitted 

as linear, with the slope of the trend equal to the stiffness of the system (slab plus load cells), 

here 𝑘𝑘 = 3.653 × 108 N/m. Data from both series S1.2 and S1.3 have been used for the 

linear fitting. 

 

Figure 6-17: Values of impact force measured under the slab, and corresponding slab displacement for the two 
series of drop tests S1.2 and S1.3 

The elastic modulus of the system slab plus load cells (denoted 𝑌𝑌c) was calibrated 

using the procedure described in Section 3.2.4 using the drop tests of series S1.3 where the 

sphere did not sustain any damage. In absence of damage and referring to Eq. (3-28), the 

experimental value of restitution coefficient is computed from energy terms as:  

 
𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑������� = �

∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟+𝐸𝐸𝑘𝑘𝑡𝑡
𝑎𝑎

𝐸𝐸𝑘𝑘𝑡𝑡
𝑟𝑟  (6-1) 

Note that in absence of damage 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑������� is equal to 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸�������. 

The experimental value of impact duration was obtained directly by the pressure 

sensor located on the slab and the theoretical evolutions of coefficient of restitution and 

impact durations are given by Eqs. (3-18) and (3-24), respectively.  
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Figure 6-18 shows the evolution of the goodness of fit (𝑅𝑅2) for the two equations as 

a function of 𝑌𝑌c. The trend is non-linear and values of modulus comprised between 11.6 GPa 

and 13.3 GPa yield 𝑅𝑅2 in excess of 0.9 and 0.55 for Eq. (3-20) and Eq.(3-24) respectively. 

Here, it was deemed that 11.6 GPa is an adequate value for the modulus of the system. 

 
Figure 6-18: Evolution of the goodness of fit (𝑅𝑅2) for the two equations as a function of 𝑌𝑌𝑐𝑐 and value of 𝑌𝑌𝑐𝑐 by a 

double fitting procedure using a non-linear least square fitting (Virtanen et al. 2020). 

Figure 6-19 shows both theoretical and experimental values of coefficient of 

restitution and impact duration with impact velocity to confirm that the fitting is adequate. 

Note that the impact times shown in Figure 6-19b are average values (of three tests) with the 

error bars representing precision of the measurements, calculated for the number tests shown 

in Figure 6-19a. 

 
Figure 6-19: (a) Measured values of coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑������� as a function of impact velocity 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎. The 

grey line represents the relationship of Eq. (3-20). (b) Average impact duration measured from I-scan sensor 𝛥𝛥𝑡𝑡𝑖𝑖 
and relationship given by Eq. (3-24). 
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6.2.3 Estimation of impact force and total impulse 
Because the load cells are placed under the slab, the impact force and duration 

between the sphere and the slab (𝐹𝐹𝐼𝐼𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅,∆𝑡𝑡𝑖𝑖) differ from the force and time recorded under 

the slab (𝐹𝐹𝑇𝑇 ,∆𝑡𝑡𝑅𝑅𝑖𝑖), as shown in Figure 6-20. Note that the duration of impact is required to 

estimate the impact impulse.  

 

Figure 6-20: Temporal evolution of impact force recorded from a load cell placed on the slab and directly 
impacted by a falling sphere (𝐹𝐹𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������) and total transmitted force (𝐹𝐹𝑇𝑇) recoded from the load cells under the slab. 

 

Figure 6-21 summarises the results of the impact analysis of series S1. Figure 6-21a 

shows the evolution of the transmitted force measured under the slab (𝐹𝐹𝑇𝑇) as a function of 

impact velocity, ranging from 2 to 7.8 m/s. It can be seen that the trend for the transmitted 

forces is linear. Tests repeated with the same impact velocity give very similar results except 

for impact velocities greater than 6 m/s, which is a transition zone to fragmentation.  

In Section 3.2.1, a theoretical relationship was established to predict the impact force 

from the transmitted force (Eq. (3-3)). To apply Eq. (3-3), one needs to know the duration 

of both the impact (here recorded by the load cell top) and the transmitted impact (recorded 

by the load cells under the slab), which are noted ∆𝑡𝑡𝑖𝑖,𝐿𝐿𝐿𝐿 and ∆𝑡𝑡𝑅𝑅𝑖𝑖, respectively. Figure 6-21b 

shows the impact duration and transmitted impact duration with impact velocity, ranging 

from 2 to 7.8 m/s.  

The impact force (𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅) was estimated using the measured transmitted force (𝐹𝐹𝑇𝑇) 

and the force ratio given by Eq. (3-3). The predicted impact force 𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅 was then 
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compared to the impact force measured by the load cell placed on top of the slab (𝐹𝐹𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������). 

Results are presented in Figure 6-21c where the grey dashed lines correspond to a relative 

error of ±20%. For 85% of the tests, the relative error is less than 11%, which suggests that 

the impact force can satisfactorily be estimated from the recorded value of transmitted force. 

The predicted impact force can then be combined with the recorded impulse 

duration to compute the impulse generated by the impact (using Eq. (3-10)). Figure 6-21d 

compares the measured impulse (𝐽𝐽𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������) to the estimated impulse (𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅). For 80% of the 

tests, the relative error is less than 12%.  

 

Figure 6-21: (a) Evolution of experimental values of transmitted force 𝐹𝐹𝑇𝑇 with impact velocity 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎.                   
(b) Experimental values of impact impulse duration ∆𝑡𝑡𝑖𝑖,𝐿𝐿𝐿𝐿  and transmitted impulse duration ∆𝑡𝑡𝑅𝑅𝑖𝑖. (c) Comparison 

of measured impact force (𝐹𝐹𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������) and impact force calculated with Eq. (3-3) (𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅). (d) Comparison of 
measured impact impulse (𝐽𝐽𝚤𝚤𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅���������) and impact impulse calculated with Eq. (3-10) (𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅). 
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It is now possible to drop mortar spheres on a pressure film sensor (used to record 

the impact duration) and estimate the impact force (between the sphere and the slab) and 

the impact impulse (between the sphere and the slab) from the transmitted force, transmitted 

impact duration and direct impact duration. This is illustrated in Figure 6-22 where the results 

of series S1.3 are superimposed on to the estimated impact force and impulse of series S1.2. 

Note that tests of series S1.3 were conducted with a pressure sensor film without a direct 

measurement of impact force so the direct comparison to an impact force is not possible. 

This is why the predicted force values are compared to results of series S1.2 to assess whether 

the predicted results are acceptable. A good agreement can be observed between measured 

and estimated results. 

 

Figure 6-22: Comparison between S1.2 and S1.3 for (a) the estimated impact force (𝐹𝐹𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅) calculated with Eq. 
(3-3), and (b) the estimated impact impulse (𝐽𝐽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐𝑅𝑅) calculated with Eq. (3-10). 

 

6.3 Experimental outcomes of fragmentation 
6.3.1 Impact survival probabilities 

A drop test can have three possible outcomes: the falling object (here a sphere) can 

remain intact (case referred to as survival without damage), sustain some damage (referred 

to as damage, Figure 6-23a) or break into fragments (referred to as fragmentation, Figure 

6-23b). For all drop tests, the impact survival probability (𝐼𝐼𝑆𝑆) was computed from the total 

number of drop tests (𝑁𝑁) and the number of tests resulting in fragmentation (𝑁𝑁𝑓𝑓) as: 
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𝐼𝐼𝑆𝑆 =

𝑁𝑁 − 𝑁𝑁𝑓𝑓
𝑁𝑁

 (6-2) 

 

 

Figure 6-23: (a) Sphere with damage (fracture) indicated with a blue line on the sphere without fragmentation;         
(b) typical fragmentation of the sphere into 3 fragments. 

 

Before investigating the impact survival probability of mortar spheres, it is important 

to ascertain the number of tests required to obtain a reliable estimate of survival probability. 

Figure 6-24 shows how, for a given diameter and impact velocity, the impact survival 

probability evolves with the number of tests. Starting from either 0% or 100%, it took about 

10 tests (for the 50 and 100 mm spheres) for the survival probability to reach a point where 

it fluctuates around a stable value: for the data shown, about 50% for the 100 mm spheres 

and about 35% for the 50 mm spheres. For the 75 mm, it took more drops to reach a suitably 

stable value of about 50%. Based on these results, it was decided to conduct 16 drops, per 

drop height, in order to obtain a reliable value of survival probability, regardless of the sphere 

diameter.  
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Figure 6-24: Evolution of impact survival probability as a function of the number of drop tests performed. For 
each sphere diameter (50, 75 and 100 mm for M2), 16 drop tests were performed, at the impact velocity indicated 

in the legend. 

Although 16 drop tests can be considered satisfactory from a practical testing point 

of view, it is a relatively small number of tests from a statistical point of view. Consequently, 

when fitting the experimental survival probability data with a Weibull distribution, the 

procedure described in Fischer-Cripps (2007) was followed, in order to account for the 

relatively small number of tests. In this procedure, a correction factor of 0.5 is used to 

compute the probability of failure, and the survival probability is then taken as one minus 

the probability of failure: 

 
𝐼𝐼𝑆𝑆𝑓𝑓𝑖𝑖𝑅𝑅 = 1 −

�𝑁𝑁𝑓𝑓 − 0.5�
𝑁𝑁

 (6-3) 

By applying such a correction when fitting the experimental data, the effect of a small and 

finite number of tests is accounted for.  

Figure 6-25 presents the experimental impact survival probability data for mortar M2 

(Figure 6-25a and b) and for mortar M3 (Figure 6-25c and d). For both materials, the survival 

probability is expressed in terms of kinetic energy and impact velocity. It can be observed 

that, although it is possible to fit the data with a Weibull distribution (parameters provided 

in Table 6-5, for all distributions), it seems that a linear trend offers a better goodness of fit. 

In particular, there is a clear divergence between experimental data and the Weibull function, 

at 0% and 100% survival probability. Also, it can be observed that the diameter of the sphere 

affects the position of the survival probability, both in terms of kinetic energy and impact 
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velocity (see Figure 6-25a and b): the larger the sphere, the higher the critical kinetic energy 

and the lower the critical impact velocity.  

Also, it appears that the larger the sphere, the flatter the central part of the survival 

probability, which is visible in Figure 6-25 and in Table 6-5 from the 𝜇𝜇𝐸𝐸  and 𝜇𝜇𝑣𝑣 values. Note 

that the size effect on the 𝜇𝜇 values is not fully understood and cannot be captured via the 

size conversion factor presented in Section 4.3. Consequently, different 𝜇𝜇𝐸𝐸 and 𝜇𝜇𝑣𝑣 values are 

used for different sphere diameters, where possible. It is interesting to note, from Table 6-5, 

that across the experimental data, 𝜇𝜇𝑣𝑣 ~2 · 𝜇𝜇𝐸𝐸 . The factor of 2 derives from Eq. (4-1) and the 

fact that, for a given diameter, the kinetic energy is proportional to the square of the velocity.  

 

Figure 6-25: Experimental impact survival probability of mortar spheres for M2 (diameter of 50, 75 and 100 mm) 
(a and b) and M3 (diameter 100mm) (c and d). Symbols represent the experimental data, while continuous lines 

represent the Weibull best fit (as per Eq. (4-1)). Each data point corresponds to 16 drop tests. 
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Table 6-5 Parameters of the Weibull distribution fitting the experimental survival probabilities. The critical kinetic 
energy and critical velocity are the scale parameters while 𝜇𝜇𝐸𝐸 and 𝜇𝜇𝑣𝑣 are the shape parameters. 

Sphere diameter (material) 50 mm (M2) 75 mm (M2) 100 mm (M2) 100 mm (M3) 
Kinetic Energy 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑐𝑐𝑟𝑟  [J] 3.68 9.28 18.79 15.93 

𝜇𝜇𝐸𝐸 7.05 6.09 5.32 7.64 
Impact Velocity 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷)

𝑐𝑐𝑟𝑟  [m/s] 7.66 6.74 6.24 5.68 

𝜇𝜇𝑣𝑣 14.36 12.25 10.74 15.24 

 

6.3.2 Fragment size distribution  
In this section, the evolution of the number of fragments as a function of impact 

velocities is first discussed, with particular focus on the range of velocity corresponding to 

an impact survival probability between 100% and 0% (series S2.1, S2.2, S2.3, S2.4). Then, 

the cumulative number of fragments is presented as a function of fragment mass, for the 

series of drop tests at “high velocities” (from 7.8 to 21 m/s, S4). 

Figure 6-26 presents the average number of large and small fragments for mortars 

M2 (Figure 6-26a, b and c) and M3 (Figure 6-26d) with the corresponding experimental 

impact survival probability. For each velocity, 16 tests were conducted. Large and small 

fragments were arbitrarily defined as those having a mass larger and smaller than 5% of the 

initial sphere mass, respectively. For completeness of data and despite the fact they are 

insignificant as a hazard, fragments as small as 0.1 g in mass were accounted for. The error 

bars in Figure 6-26 represents the minimum and the maximum number of fragments (large 

or small) observed at each velocity. Figure 6-26 shows similar trends for all series, regardless 

of size and strength of spheres: the average number of fragments goes from two, for high 

impact survival probability (i.e. when the fragmentation of the sphere can be observed only 

for a small number of tests), to a maximum of five for survival probability of 0% (i.e. all the 

spheres will break at that impact velocity). Figure 6-26 also shows that the number of small 

fragments in the range of velocity considered is very low.  
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Figure 6-26: Average number of large (mass > 5% of initial mass) and small (mass < 5% of initial mass) 
fragments as a function of impact velocity for M2 spheres (diameter of 50, 75 and 100 mm) (a, b and c) and M3 

spheres (diameter 100bmm) (d). The error bars on the number of fragments represent the minimum and maximum 
value recorded at that specific impact velocity. The experimental survival data and survival probability functions 

(Weibull) are also plotted. 

 

A similar trend can be seen for mortar M1 (Figure 6-27a) in the range of impact 

velocity corresponding to 0%-100% of survival probability. Interestingly, it can be seen that 

increasing the impact velocity further results in an average number of small fragments 

exceeding the average number of large fragments. This change in trend is possibly the 

reflection of a change in breakage mechanism with more crushing and localised damage 

creating small fragments, as the impact velocity increases. This phenomenon was further 

investigated using Series S4 of mortar M1 (Figure 6-27b and Figure 6-29). 
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Figure 6-27: Average number of large (mass > 5% of initial mass) and small (mass < 5% of initial mass) 
fragments as a function of impact velocity for 100 mm spheres for M1, for (a) series S3.2 with low impact 

velocities, and (b) series S4 with higher impact velocities. The error bars on the number of fragments represent 
the minimum and maximum value recorded at that specific impact velocity. The experimental survival data and 
survival probability functions (Weibull) are also plotted. Note that, for series S3.2, 16 tests were performed at 

each velocity between 5 m/s and 7 m/s and 4 tests for impact velocity equal to 7.8 m/s and 10 m/s. For series S4 
only, tests were grouped according to the measured impact velocity (see Table 6-6). 

 

Figure 6-27b and Figure 6-29 report the results of drop tests conducted at “high 

velocity” (S4, see Section 5.3) and focusing on fragment size distribution. Note these tests of 

spheres of 100 mm diameter (using mortar M1) were conducted using the secondary setup. 

Due to the different dropping device (see Figure 3-16), the impact velocity of these tests was 

less controlled than it was for the other series conducted in the fragmentation cell (see Figure 

6-28). In addition, Figure 6-28 shows that the terminal velocity of spheres delivered through 

the pipe was approached. For this reason, tests with similar impact velocity measured were 

grouped as per Table 6-6. 
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Figure 6-28: Difference between theoretical and measured impact velocity as function of the drop height for 

series S4. 

 

Table 6-6 Number of tests from a given height and corresponding average impact velocity for series S4. 

Average impact velocity 

(measured) [m/s] 
# of tests 

8.8 3 

10.3 6 

12.5 6 

15.0 6 

16.7 4 

17.6 4 

 

Figure 6-27b shows that, for values of impact velocity larger than that corresponding 

to 0% survival probability (i.e. 7.8 m/s), the average number of small fragments is larger than 

the average number of large fragments and that the number of small fragments increases 

with the impact velocity, up to 15m/s. Then, between 15 m/s and 17.6 m/s, the number of 

large and small fragments both seem to reach a plateau. This observation could suggest that 

the same fragmentation mechanism prevails in that range, leading to similar numbers of small 

and large fragments. However, further analysis of the drop test results, presented hereafter, 

will show that it is not the case. 

Results of drop tests were then plotted in terms of mass distribution rather than 

fragment numbers (Figure 6-29) for all drop tests, under impact velocities ranging from 

8 m/s and 17.6 m/s. 
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Figure 6-29a shows that the fragment size distributions (FSD) under 8 m/s and 

17.6m/s are very different and that progressively increasing the impact velocity leads to a 

progressive change in the shape of the distribution. The FSD under 8 m/s contains three 

parts: a steep increase of large fragments (mass > 100 g), a relatively flat central part 

(0.5 g < mass < 100 g) and a steep part showing an accumulation of very small fragments 

(mass < 0.5 g). Such a distribution reflects the presence of 4 to 5 large fragments 

(mass > 100 g), 1 medium size fragment (mass around 10 g) and some very small fragments. 

On the other end, the FSD under 17.6 m/s is more well graded with 3 large fragments 

(mass > 100g) and many fragments in the mass range from 1 to 100 g, leading to a 

continuous increase of cumulative number of fragments. 

Unlike in Figure 6-26b, it is here possible to see a difference between tests conducted 

at 15 m/s and those at 17.6 m/s: the increase of velocity leads to a steepening of the central 

part of the FSD (masses below 100 g), and upward shift of the curve due to the fact that the 

largest fragments (mass > 100 g) produced under 17.6m/s tend to be of similar size 

(resulting in a steep start of the FSD) as opposed to three fragments of different sizes 

(resulting in a flatter start of the FSD).  

Interestingly, the FSD obtained here are not linear in a logarithmic scale, which 

accords with in situ observations by Corominas and co-workers (Ruiz-Carulla et al. 2015) 

but contradicts the idea of a scale invariant fractal distribution of fragments (Ruiz-Carulla et 

al. 2017). Ruiz-Carulla and Corominas (2020) updated the fractal fragmentation model using 

the formulation proposed by Perfect (1997) for scale variant fragmentation, which would 

result in a better fit of our experimental data. 

To summarise, mortar spheres were found to fragment into less than five large and 

a few small fragments for impact velocities corresponding to a 100%-0% range of survival 

probability, while for higher values of impact velocities, increasing fragment numbers are 

produced and the size of the largest fragments progressively decreases with increasing 

velocity.  
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Figure 6-29: Cumulative number of fragments as function of the fragment mass for series S4 (mortar M1): (a) all 
data and (b) close up of Figure 6-28a for fragment masses in excess of 50 g. 
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6.4 Prediction of survival probability 
As discussed in Section 4.1, the Weibull impact survival probability is described by 

the predicted shape parameter (𝜇𝜇𝐸𝐸 or 𝜇𝜇𝑣𝑣) and the calculated scale parameter (i.e. critical 

kinetic energy 𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑐𝑐𝑟𝑟  or critical impact velocity 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷)

𝑐𝑐𝑟𝑟 ). 

 

6.4.1 Experimental and predicted values of values of conversion factors 
The experimental data collected during this study allowed the determination of 

experimental conversion factors and predicted conversion factors, derived in Sections 4.2, 

4.3 and 4.4. Comparing the experimental and predicted values constitutes a first step towards 

the validation of the novel model to predict the survival probability of the mortar spheres 

upon dynamic impact. 

To determine 𝐶𝐶𝑆𝑆𝑖𝑖𝑧𝑧𝑎𝑎 , the critical work required to fail the spheres under compression 

was measured and plotted as a function of sphere diameter. The data was then fitted with a 

power law, the exponent of which was compared to the exponent of the proposed size 

conversion factor. (see Eq. (4-20) and Figure 6-30): 3 − 5/𝜇𝜇𝐵𝐵𝑇𝑇−𝐹𝐹 . The factor 𝜇𝜇𝐵𝐵𝑇𝑇−𝐹𝐹 is 

obtained by fitting a Weibull curve to the distribution force at failure for all Brazilian tests 

on discs of a given mortar. The conversion factor 𝐶𝐶𝑟𝑟𝑎𝑎𝑅𝑅𝑎𝑎 was determined using experimental 

values of 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 and 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 : 

• 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝐹𝐹 was obtained, for each sphere diameter, by dividing the critical impact force 

for all drop tests by the critical force at failure for all sphere compression tests. Note: 

the critical force is the value corresponding to 37% probability when expressing the 

results of a test in terms of survival distribution, as per Eq. (4-1).  

• 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎−𝛿𝛿 was calculated, for each sphere diameter, by dividing the critical dynamic 

reduction in diameter of the spheres (back-calculated from the impact mark left on 

the aluminium foil on the impact surface, see Section 3.1.2) by the measured critical 

reduction in diameter at failure for spheres under compression.  

Finally, 𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 was back-calculated for each sphere diameter, from the experimental 

values of the size conversion factor (𝐶𝐶𝑆𝑆𝑖𝑖𝑧𝑧𝑎𝑎), of the critical work required to fail the 54 mm 

disc (𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟 ) under indirect tension (Brazilian test) and of the critical work required to fail 

spheres of diameter D in compression (𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷)
𝑐𝑐𝑟𝑟 ), owing to the following relationship: 
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 𝑊𝑊𝑆𝑆𝐿𝐿(𝐷𝐷)
𝑐𝑐𝑟𝑟 = 𝐶𝐶𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑎𝑎 ∙ 𝑊𝑊𝐵𝐵𝑇𝑇(𝑑𝑑)

𝑐𝑐𝑟𝑟  (6-4) 

Equations (4-14), (4-20) and (4-28) provide the formulation of the different 

conversion factors required to predict the critical value of kinetic energy for the drop tests. 

The inputs used to calculate these factors are given in Table 6-7. Note the following details 

regarding the inputs: 

• The Young’s modulus of steel and Poisson’s ratio of mortar, concrete and steel are 

presumptive values. 

• For the mortar, a series of UCS tests were conducted and for each test the secant 

modulus (between the initiation of specimen loading and failure) was determined. An 

average value, computed from all UCS test results, was used as an input for Eq. (4-14) 

and Eq. (4-28).  

• The Young’s modulus of the system slab plus load cells was back-calculated from 

measurements upon impact, as detailed in Section 6.2.2. 

• Given the variability of force required to fail the mortar discs during the Brazilian 

test, the critical value of 𝐹𝐹𝐵𝐵𝑇𝑇(𝑑𝑑)
𝑐𝑐𝑟𝑟 was used as an input in Eq. (4-14). 

Figure 6-30 below shows the increase of critical work required to fail the mortar 

spheres in compression with increasing sphere diameter for M2. The data are fitted with a 

power law whose exponent (equal to 2.36), is the exponent of the experimental size 

conversion factor (as discussed before and utilised as per Eq. (4-20)). 

 
Figure 6-30: Evolution of critical work of sphere compression tests (M2) as function of their diameter. The 

continuous line is a power law fitting.  
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Table 6-7 Input parameters for the calculation of predicted and experimental conversion factors. 

Parameter M2 M3 
Brazilian 

tests 
50 mm 
Sphere 

75 mm 
Sphere 

100 mm 
Sphere 

Brazilian tests 

𝑫𝑫 [mm] 54 50 75 100 54 
𝒉𝒉 [mm] 27 n/a n/a n/a 27 
m [kg] 0.116 0.125 0.409 0.964 0.118 

𝒀𝒀𝒎𝒎 [GPa] 4.40 4.57 
𝒀𝒀𝒄𝒄 [GPa] 11.70 
𝒀𝒀𝒔𝒔 [GPa] 210 
𝝂𝝂𝒎𝒎 0.20 0.20 
𝝂𝝂𝒄𝒄 0.15 
𝝂𝝂𝒔𝒔 0.29 

𝑭𝑭𝑩𝑩𝑩𝑩(𝒅𝒅)
𝒄𝒄𝒄𝒄  [N] 4849 n/a n/a n/a 4487 

𝑭𝑭𝑺𝑺𝑺𝑺(𝑫𝑫)
𝒄𝒄𝒄𝒄  [N]* n/a 5909 9132 15924 n/a 

𝑭𝑭𝑫𝑫𝒀𝒀𝑫𝑫(𝑫𝑫)
𝒄𝒄𝒄𝒄  [N]* n/a 10274 17788 27900 n/a 

𝜹𝜹𝑺𝑺𝑺𝑺(𝑫𝑫)
𝒄𝒄𝒄𝒄  [mm]* n/a 0.80 1.16 1.49 n/a 

𝜹𝜹𝑫𝑫𝒀𝒀𝑫𝑫(𝑫𝑫)
𝒄𝒄𝒄𝒄  [mm]* n/a 0.70 0.91 1.15 n/a 

𝑾𝑾𝑩𝑩𝑩𝑩(𝒅𝒅)
𝒄𝒄𝒄𝒄

 [J] 0.663 n/a n/a n/a 0.510 

𝑾𝑾𝑺𝑺𝑺𝑺(𝑫𝑫)
𝒄𝒄𝒄𝒄

 [J]* n/a 2.01 4.51 10.54 n/a 

𝜶𝜶 0.8 0.8 
𝒕𝒕𝑩𝑩𝑩𝑩[s] 30 n/a n/a n/a 20 

𝒕𝒕𝒊𝒊𝒎𝒎𝒊𝒊𝒊𝒊𝒄𝒄𝒕𝒕  [ms] n/a 0.24 0.38 0.52 0.51 

𝝁𝝁𝑩𝑩𝑩𝑩−𝑭𝑭 8.90 n/a n/a n/a 10.25 
*: experimental values used to compute the experimental conversion factors for M2 only. 

 

Table 6-8 Predicted and experimental conversion factors with associated relative error. 

Sphere diameter (Material) 50 mm (M2) 75 mm (M2) 100 mm (M2) 100 mm (M3) 

𝑺𝑺𝑺𝑺𝒉𝒉𝒊𝒊𝒊𝒊𝑺𝑺 

Predicted 4.16 4.70 

Experimental 3.64 3.13 3.70 n/a 

Relative error 12.6% 24.8% 11.0% n/a 

𝑺𝑺𝑺𝑺𝒊𝒊𝑺𝑺𝑺𝑺 

Predicted 0.83 2.23 4.49 4.28 

Experimental 0.83 2.18 4.30 n/a 

Relative error -0.5% 2.3% 4.3% n/a 

𝑺𝑺𝑹𝑹𝒊𝒊𝒕𝒕𝑺𝑺 

Predicted 1.54 1.48 1.43 1.39 

Experimental 1.51 1.54 1.35 n/a 

Relative error 2.0% -4.2% 6.5% n/a 
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6.4.2 Prediction of Weibull scale parameters 
The critical work and critical force determined from the series of Brazilian tests are 

0.663 J and 4,849 N for M2 and 0.520 J and 4,487 N for M3, respectively (see Table 6-7). 

Applying the predicted values of conversion factors (𝐶𝐶𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎, 𝐶𝐶𝑆𝑆𝑖𝑖𝑧𝑧𝑎𝑎, 𝐶𝐶𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎) of Table 6-8 to 

the critical work yields the values of critical kinetic energy and critical velocity reported in 

Table 6-9 and plotted in Figure 6-31.  

Table 6-9 Predicted and experimental values of critical kinetic energy and critical impact velocity (Weibull scale 
parameters) with relative error. 

Sphere diameter (Material) 50 mm (M2) 75 mm (M2) 100 mm (M2) 100 mm (M3) 

𝑬𝑬𝒌𝒌(𝑫𝑫)
𝒄𝒄𝒄𝒄  [J] Predicted 3.52 9.06 17.75 14.26 

Experimental 3.68 9.28 18.79 15.93 

Relative error -4.4% -2.4% -5.5% -10.5% 

𝒗𝒗𝒊𝒊𝒎𝒎𝒊𝒊(𝑫𝑫)
𝒄𝒄𝒄𝒄  [m/s] Predicted 7.49 6.65 6.07 5.38 

Experimental 7.66 6.74 6.24 5.68 

Relative error -2.2% -1.2% -2.8% -5.2% 

The error between the measured and predicted critical kinetic energy ranges from 

about -2.4% to -11% while the error between the measured and predicted critical impact 

velocity is less than -5.2%. Note that Table 6-9 reports the error between the predicted 

Weibull parameters against the parameters of the Weibull distribution that has been fitted 

against the experimental data. It is not a direct comparison with the experimental data, which 

will be presented later (see Section 6.4.4).  

 

Figure 6-31: Comparison of predicted and measured critical kinetic energy (a) and critical velocity (b) for the 
three sphere diameters, for both M2 and M3 mortars. 
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6.4.3 Prediction of Weibull shape parameters 
There are many strength characterisation tests (refer to Table 6-2) in which samples 

are tested to failure, and which might serve as a proxy for the impact strength of a sphere. 

This presents a dilemma of which test to adopt to give the Weibull shape parameter for the 

impact survival probability. To be consistent with an impact survival probability expressed 

in kinetic energy and the shape of the falling object, it is first proposed to use the Weibull 

shape parameter of the distribution of the critical work required to fail the mortar spheres in 

quasi-static compression: 

 𝜇𝜇𝐸𝐸 = 𝜇𝜇𝑆𝑆𝐿𝐿−𝑊𝑊 (6-5) 

As discussed in Section 6.3.1, for a given sphere diameter, kinetic energy is 

proportional to the square of impact velocity, which for a Weibull distribution translates into 

𝜇𝜇𝑣𝑣 = 2 ∙ 𝜇𝜇𝐸𝐸 . So, considering Eq. (6-5), we get: 

 𝜇𝜇𝑣𝑣 = 2 ∙ 𝜇𝜇𝑆𝑆𝐿𝐿−𝑊𝑊 (6-6) 

Given Eq. (6-5) and Eq. (6-6) and the Weibull shape parameters of Table 6-2, the 

𝜇𝜇𝐸𝐸  and 𝜇𝜇𝑣𝑣 values of Table 6-10 were used for the prediction of impact survival probability.  

Table 6-10 Values of Weibull shape parameter for the prediction of impact survival probability of mortar spheres 
(M2). 

Sphere diameter 50 mm 75 mm 100 mm 

𝝁𝝁𝑬𝑬 6.2 5.2 4.5 

𝝁𝝁𝒗𝒗 12.4 10.4 9 

 

Note that using Eq. (6.6) and (6.7) allows the size effect on the Weibull shape 

parameter as observed in Section 6.3.1 to be captured. 

 

6.4.4 Impact survival probability function and prediction accuracy 
Figure 6-32 shows the impact survival probability (in terms of kinetic energy in Figure 

6-32a and impact velocity in Figure 6-32b) predicted from the Weibull formulation shape 

and scale parameters reported in Table 6-9 and Table 6-10. The experimental data are also 

reported in Figure 6-32 for comparison. The predicted curves fall very close to the 

experimental data and the size effect is adequately captured. This is consistent with the 
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prediction of critical kinetic energy and impact velocity reported in Table 6-9 and confirms 

the excellent predictive ability of the novel model.  

 

Figure 6-32: Experimental and predicted survival probability (SP) in terms of (a) kinetic energy and (b) velocity 
for mortar spheres subjected to dynamic impact (diameter of 50, 75 and 100 mm, mortar M2). A Weibull function 

is used to describe the survival probability. Prediction made using parameters of Table 6-9 and Table 6-10. 

Figure 6-33 reports the error between the prediction and the actual experimental data 

(5 data points per survival probability). The relative error was estimated for the kinetic energy 

and for the impact velocity for given values of survival probability. As mentioned in Section 

6.3.1, the error is relatively large at 0% and 100% survival probability, which is due to the 

difference in basic shape between the Weibull distribution and the experimental trend, which 

seems to be almost linear. Note that the suitability of a linear function will be considered in 

more detail in Section 6.4.5. For all other values of survival probability, the prediction is 

made with a relative error of less than 10%. 
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Figure 6-33: Evolution of relative error on predicted kinetic energy and impact velocity for given values of 
survival probability and for three sphere diameters (mortar M2). The error is computed relative to the 

experimental data. 

 

6.4.5 Evaluation of the outcomes of this model 
It is pertinent to discuss the accuracy of prediction using the model developed here 

in the context of rockfall engineering. As a preface to this, it is first acknowledged that the 

treatment of spheres has limited direct application and that the effects of block shape, 

discontinuities and impacted surface properties (among others) all need to be captured for 

the prediction of impact survival probability to be realistic, but this constitutes future 

research.  

For the sake of the discussion, however, consideration will be limited to spherical 

falling rocks. The prediction method presented is a rigorous academic exercise that relies on 

extensive material characterisation testing, including a series of compression tests on 

spherical specimens having different diameters, to obtain a diameter specific shape parameter 

for the impact survival probability (𝜇𝜇𝐸𝐸 and 𝜇𝜇𝑉𝑉, see Table 6-10). Obtaining a very large 

number of identical spherical rock specimens to test in practice would be expensive, time 

consuming and impractical, if not impossible. For the approach described here to be applied 
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in practice, it is essential to reduce the volume of testing required and obtain the statistical 

information from tests for which specimen preparation is not difficult and expensive, such 

as the Brazilian tests. In addition, for practical reasons, it is reasonable to consider that all 

specimens would be cored from blocks to have a standard diameter.  

Consequently, it is appropriate here to assess the quality of survival predictions for 

spheres of any diameter when the shape parameter 𝜇𝜇 of the impact survival probability 

function (i.e. 𝜇𝜇𝐸𝐸 = 𝜇𝜇𝐵𝐵𝑇𝑇−𝑊𝑊) is based solely on the statistical information from a series of 

Brazilian tests conducted on specimens of standard diameter (around 50 mm). Note that the 

corresponding value of 𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑐𝑐𝑟𝑟  is unchanged as it does not rely on any statistical information 

coming from the compression tests on spheres. The Weibull shape and scale parameters used 

for such practical prediction are given in Table 6-11.  

Table 6-11 Weibull parameters used for prediction of impact survival probability of spheres having different 
diameter and using statistical information from Brazilian tests only. 

Weibull Parameters 
of prediction 

Sphere diameter (material) 

50 mm (M2) 75 mm (M2) 100 mm (M2) 100 mm (M3) 

𝝁𝝁𝑬𝑬 4.2 6.2 
𝑬𝑬𝒌𝒌(𝑫𝑫)
𝒄𝒄𝒄𝒄  [J] 3.52 9.06 17.75 14.26 

 

Given that the Weibull shape parameter of Table 6-11 is lower than the Weibull 

shape parameters of the previous prediction from M2 (see Table 6-9, Figure 6-32 and Figure 

6-33), which, in turn, are lower than the experimental shape parameters (Table 6-5), the 

relative error can be expected to increase. In order to obtain a better-quality prediction and 

be more consistent with the experimental observations, it is proposed to describe the impact 

survival probability as a linear function rather than a Weibull function. The linear function is 

still defined from the Weibull scale and shape parameters as (see derivations in Appendix A) 

as:  

 
𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟 = 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑐𝑐𝑟𝑟 �1 −
�𝐼𝐼𝑆𝑆�𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑟𝑟 � − 37� ∙ 𝑒𝑒
100 ∙ 𝜇𝜇𝐸𝐸

� (6-7) 

Figure 6-34 shows the predicted impact survival probability based on a linear 

function and the relative error, with respect to the experimental data for both materials. 

Overall, a very good match is observed between the data and the prediction, which is made 

only from material properties derived from standard Brazilian tests. The maximum relative 
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error is around 27% but for two thirds of the predicted points, the relative error is less than 

12%. Most of the errors are negative, indicating that the model tends to slightly 

underestimate the kinetic energy associated to a given survival probability. 

 

 

Figure 6-34: Experimental and predicted impact survival probability; (a) expressed in terms of kinetic energy for 
M2 (diameter of 50, 75 and 100 mm) and (b) for M3 (diameter 100 mm). Evolution of relative error on predicted 
kinetic energy for given values of survival probability for M2 (c) and M3 (d). All predictions were made using the 

parameters of Table 6-11. 
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6.5 Energy partition and tracking of fragments  
As stated in the introduction of this thesis, many aspects of rockfall fragmentation 

are still poorly understood and, when it comes to the energy balance, the following questions 

still remain unanswered: 

• Question 1: Is it possible to approximate the energy consumed in fragmentation as a 

surface energy per unit area multiplied by the total area of fragment surface (Eq. 

(3-17))? Although Eq. (3-17) provides the amount of energy to form a new fracture 

surface, in the context of rockfall, not all cracks produced during an impact lead to 

the creation of a fragment surface (some remain internal and are not visible) and 

hence cannot be accounted for. Also, the impacted materials can be subjected to 

some crushing in addition to cracking.  

• Question 2: Is the ratio of amount of energy consumed in fragmentation over kinetic 

energy at impact constant? 

• Question 3: Is there a clear relationship between energy of fragments post-impact 

and their mass?  

In this section, the result of series S3.1 and S3.2 will be presented to provide elements 

of answer to these questions. As mentioned in Section 5.3, in Series S3.1 (impact velocity 

from 2.9 to 7.8 m/s), all energy components were estimated from the tracking and impact 

data with an emphasis on verifying that all significant dissipative components can be captured 

and that the energy balance can be computed reliably. Ten drop tests from series S1.3 

representing three different outcomes (rebound without damage, rebound with damage and 

fragmentation) were analysed in detail and the results are presented in this section. In Series 

S3.2 (impact velocity from 5.5 to 10 m/s), all energy components were estimated from the 

tracking and impact data with an emphasis on the possible change in energy partition 

between various dissipation mechanisms with increasing impact energy. In this series, 22 

tests with fragmentation were analysed. 

 

6.5.1 Validation of the energy balance 
The experimental setup presented in Chapter 3 was designed so that the most 

significant components of energy could be accurately computed, before and after impact. 

Ten drop tests of series S1.3 (mortar M1*) were first used to introduce and compute the 

different components of energy, one at a time. These tests correspond to:  
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• 4 cases of rebound without damage (tests referred to as S1.3-I1, S1.3-I2, S1.3-I3 and 

S1.3-I4, “I” standing for intact); 

• 2 cases of rebound with damage (S1.3-D1 and S1.3-D2, “D” standing for damage) 

(see Figure 6-23a); 

• 4 cases of fragmentation (S1.3-F1, S1.3-F2, S1.3-F3 and S1.3-F4, “F” standing for 

fragmentation) (see Figure 6-23b). 

Note that damage refers to the creation of cracks within the mortar spheres without creation 

of fragments. Fragmentation is only observed when sufficient cracks extend or coalesce 

across the sphere. 

For all drop tests, the total kinetic energy before impact (𝐸𝐸𝑘𝑘𝑟𝑟) is the sum of total 

energy loss (∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅) plus the total kinetic energy after impact (𝐸𝐸𝑘𝑘𝑎𝑎). In addition, because all 

spheres were dropped without rotation, the rotational energy component pre-impact is nil 

(𝐸𝐸𝑘𝑘𝑟𝑟𝑟𝑟 = 0). For each test, the relevant energy dissipation mechanisms were identified and the 

energy losses were computed, as per Section 3.2.4. The results, expressed in Joules and in % 

of kinetic energy before impact, are reported in Table 6-12. 

 

Analysis of tests without damage 

Tests S1.3-I1, S1.3-I2, S1.3-I3 and S1.3-I4 were conducted at impact velocities of 

2.91, 4.00, 4.98, and 6.00 m/s, respectively, and no fragmentation or damage was observed. 

The analysis of energy transformation components is as follows:  

• ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟 : the energy lost in displacing the slab only represents 0.2% of the total kinetic 

energy at impact and can be considered negligible. 

• ∆𝐸𝐸𝑑𝑑 : between 67% and 77% of the kinetic energy at impact is dissipated by 

deformation of the sphere and the slab at the site of the impact.  

• ∆𝐸𝐸𝑓𝑓𝑟𝑟: the fragmentation or damage energy component is nil.  

• 𝐸𝐸𝑘𝑘𝑎𝑎: as a consequence of the increasing energy loss at impact, the translational kinetic 

energy after the impact decrease from 32% to 21% of the total kinetic energy at 

impact. 

The sum of all energy components is very close to 100%. 
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Table 6-12: Result of energy balance computation for drop tests of series S1.3. Each energy component is expressed 
in absolute value (in J) and in relative value (percentage of the total kinetic energy before impact). 

 TESTS 
 

Unit 

S1
.3

 -I
1 

S1
.3

 -I
2 

S1
.3

 -I
3 

S1
.3

 -I
4 

S1
.3

 -D
1 

S1
.3

 -D
2 

S1
.3

 -F
1 

S1
.3

 -F
2 

S1
.3

 -F
3 

S1
.3

 -F
4 

Impact velocity 
𝒗𝒗𝒊𝒊𝒎𝒎𝒊𝒊 m/s 2.91 4.00 4.98 6.00 7.06 7.07 7.06 7.79 7.80 7.81 

E
ne

rg
y 

co
m

po
ne

nt
 

𝑬𝑬𝒌𝒌𝒃𝒃 (1) J 4.23 7.97 12.56 18.21 25.49 25.25 25.20 30.59 30.57 30.92 

∆𝑬𝑬𝒔𝒔𝒔𝒔𝒊𝒊𝒃𝒃 (2) 
J 0.01 0.02 0.03 0.04 0.05 0.06 0.05 0.06 0.05 0.05 

% 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

∆𝑬𝑬𝒅𝒅 (3) 
J 2.85 5.76 9.44 14.09 20.17 19.97 19.93 24.50 24.49 24.78 

% 67.5 72.2 75.1 77.3 79.1 79.1 79.1 80.1 80.1 80.1 

∆𝑬𝑬𝒇𝒇𝒄𝒄 (4) 
J 0.00 0.00 0.00 0.00 0.91 1.11 1.22 1.38 1.38 1.39 

% 0.0 0.0 0.0 0.0 3.6 4.4 4.9 4.5 4.5 4.5 

∆𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 (5) 
J 2.86 5.78 9.46 14.12 21.13 21.14 21.20 25.94 25.92 26.22 

% 67.7 72.5 75.3 77.5 82.9 83.7 84.1 84.8 84.8 84.8 

𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  (6) 
J 1.36 2.20 3.14 3.91 4.51 6.69 3.49 3.72 3.26 3.37 

% 32.2 27.5 25.0 21.4 17.7 26.5 13.8 12.2 10.6 10.9 

𝑬𝑬𝒌𝒌𝒄𝒄𝒊𝒊  (7) 
J 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.03 0.06 

% 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.2 

𝑬𝑬𝒌𝒌𝒊𝒊 (8) 
J 1.36 2.20 3.14 3.91 4.51 6.69 3.56 3.74 3.28 3.43 

% 32.2 27.5 25.0 21.4 17.7 26.5 14.1 12.2 10.7 11.1 

𝑬𝑬𝒌𝒌𝒃𝒃 − 𝑬𝑬𝒌𝒌𝒊𝒊 
J 2.87 5.78 9.43 14.30 20.99 18.56 21.64 26.85 27.29 27.50 

% 67.8 72.5 75.0 78.6 82.3 73.5 85.9 87.8 89.3 89.0 

𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 (9) 
J 4.22 7.97 12.60 18.02 25.64 27.83 24.76 29.68 29.2 29.64 

% 99.9 100.0 100.3 99.0 100.6 110.2 98.3 97.0 95.5 95.9 
Notes: 

(1) Total kinetic energy before impact, measured from mass and impact velocity; 
(2) Energy loss in displacement of the slab, estimated by Eq. (3-16); 
(3) Energy loss by deformation of the sphere and the slab, estimated by Eq. (3-19); 
(4) Energy loss to create the fracture surfaces, estimated by Eq; (3-17); 
(5) Total energy loss associated with the impact: ∆𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 = ∆𝑬𝑬𝒔𝒔𝒔𝒔𝒊𝒊𝒃𝒃 + ∆𝑬𝑬𝒅𝒅 + ∆𝑬𝑬𝒇𝒇𝒄𝒄; 
(6) Total translational kinetic energy of all the fragments, estimated by Eq. (3-14); 
(7) Total rotational kinetic energy of all the fragments, estimated by Eq. (3-15); 
(8) Total kinetic energy after impact, estimated by Eq. (3-13); 
(9) Total energy after impact: 𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 = ∆𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 + 𝑬𝑬𝒌𝒌𝒊𝒊. 
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Analysis of tests with damage but no fragmentation 

For the two damage tests, S1.3-D1 and S1.3-D2 (impact velocity of 7 m/s), the 

spheres presented visible damage (cracks) but did not produce fragments at the first impact 

(see Figure 6-23a). As such, energy was lost in displacement of the slab, deformation of the 

slab and the sphere and damage within the sphere. The analysis of energy transformation 

components is as follows:  

• ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟: the energy dissipated by displacing the slab is again negligible (0.2% of total 

kinetic energy at impact).  

• ∆𝐸𝐸𝑑𝑑 : about 79% of total kinetic energy at impact is dissipated by deformation of the 

sphere and the slab.  

• ∆𝐸𝐸𝑓𝑓𝑟𝑟: for test S1.3-D2, the sphere broke at the second impact of the first drop (after 

the first rebound). Therefore, it was possible to scan a fracture area (see Figure 6-35c) 

that was initiated at the first impact. For test S1.3-D1, it was assumed that the fracture 

would split the sphere in two halves (as per test S1.3-D2 and other results reported 

in the literature, e.g. Asteriou et al. (2013a), Salman et al. (2004)). Table 6-12 shows 

that for test S1.3-D1 and S1.3-D2, about 3.6% and 4.4% of total kinetic energy at 

impact is consumed by damage, respectively.  

• 𝐸𝐸𝑘𝑘𝑎𝑎: the two tests showed different translational kinetic energy after impact: 17.7% 

and 26.5% of the total kinetic energy at impact, for S1.3-D1 and S1.3-D2 respectively. 

For S1.3-D1, the sum of all energy components adds up to 100.6%, which is 

considered acceptable, given a relative error estimated to be around ±5%. In contrast, a total 

of 110% is achieved for test S1.3-D2, which indicates quite a large error. Analysing in more 

detail the different energy components pertaining to test S1.3-D2 revealed that the 

translational kinetic energy after impact is much higher than that of test S1.3-D1: 26.5% 

against 17.7%. Such anomaly is also confirmed by the experimental value of 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸������� computed 

as square root of the ratio between the experimental total kinetic energy after and before 

impact (see Figure 6-36). The computation of energy balance relies on the prediction of 

𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑 as a function of impact velocity as per Eq. (3-20) (represented by the grey line in Figure 

6-36a). For some unexplained reason, sphere S1.3-D2 bounced more than predicted, 

resulting in less dissipation of energy and, hence, an overestimation of the energy balance 

(110% instead of 100%). This unexpected result only constitutes one case out of 21 drops 

over the two series and is considered an outliner. 



127 

 

 

Figure 6-35: Example of a scanned fragment showing the fracture surface created by fragmentation. 

 

 

Figure 6-36: Coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸������� for tests S1.3-I1, S1.3-I2, S1.3-I3, S1.3-I4, S1.3-D1, S1.3-D2 and 
S1.3-F1. 

 

Analysis of tests with fragmentation 

The impact velocity for the fragmentation tests was 7m/s for test S1.3-F1 and 7.8m/s 

for tests S1.3-F2, S1.3-F3 and S1.3-F4. Sphere S1.3-F1 broke into 2 pieces, while the other 

3 spheres fragmented into 3 pieces upon the first impact. S1.3-F1 and S1.3-F4 each had a 

fragment that further split in two pieces at the second impact with the slab, due to the 

presence of a fracture created at the first impact. Therefore, it was possible to scan the actual 

fracture areas initiated at the first impact for these two tests. All relevant fragment 

characteristics are reported in Table 6-13. For these tests, all three energy dissipation 

components (displacement, deformation, fragmentation) prevail. The analysis of energy 

transformation components is as follows:  
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• ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟: the energy dissipated by displacing the slab is negligible for all tests (0.2% of 

total kinetic energy at impact).  

• ∆𝐸𝐸𝑑𝑑 : the energy lost in slab/sphere deformation accounts for around 80% of the 

total kinetic energy at impact (see in Table 6-12). 

• ∆𝐸𝐸𝑓𝑓𝑟𝑟: between 4.5% and 4.9% of the total kinetic energy at impact is consumed in 

fragmentation. The slightly higher value of energy dissipated in fragmentation for test 

S1.3-F1 is related to a slightly higher fracture area (see in Table 6-12). Indeed, the 

energy dissipated in fragmentation is directly proportional to the fracture area (see 

Eq. (3-17)). 

• 𝐸𝐸𝑘𝑘𝑎𝑎: the translational kinetic energy after impact is around 14% to 11% of the total 

kinetic energy at impact. A small amount of rotational kinetic energy was computed 

for the fragments post impact. For a drop test of a sphere without initial rotation, 

less than 1% of the total kinetic energy at impact is transferred into rotation of 

fragments. 

The sum of all energy dissipation components and residual kinetic energy was found 

to represent 95.5% to 98.2% of the total kinetic energy at impact, which is considered 

acceptable, given a relative error estimated around ±5%.  

Results in Table 6-12 also show that overall, as the impact energy (𝐸𝐸𝑘𝑘𝑟𝑟) increases, 

more energy is dissipated at impact (∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅), which is associated to an increasing development 

of cracks up to the creation of fragments.  

The energy balance of in Table 6-12 was further processed to compare the energy 

lost at impact defined as the difference of kinetic energy before and after impact (𝐸𝐸𝑘𝑘𝑟𝑟 − 𝐸𝐸𝑘𝑘𝑎𝑎) 

and the energy lost at impact defined as the sum of all dissipative energy components (i.e., 

total energy loss ∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅). The comparison is presented in Figure 6-37 with an estimate of 

experimental error (assessed as ± 5%). All data points plot on or very close to the 1:1 line, 

which suggests that all relevant dissipative components have been captured and that the 

energy balance has been computed properly. The two main dissipative components of the 

impact pertain to the deformation of the sphere and slab upon impact and the creation of 

cracks, leading to fragmentation.  
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Figure 6-37: Difference between kinetic energy before and after impact vs the sum of all the energy loss. The 
error bars indicate the maximum experimental error (about 5% in ∆𝐸𝐸𝑅𝑅𝑡𝑡𝑅𝑅 and 2% in the difference of the kinetic 

energies). 

 

So to answer Question 1, on the basis of Figure 6-37, it is possible to estimate the 

energy consumed in fragmentation as the surface energy per unit area multiplied by the total 

area of fragment surface (Eq. (3-17)).  
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Table 6-13 Fragment characteristics for tests S1.3-F1, S1.3-F2, S1.3-F3 and S1.3-F4. 

 
 

Mass 
[g] 

Volume 
[cm3] 

Fracture 
area [m2] 

𝒗𝒗𝒙𝒙𝒙𝒙 
[m/s] 

𝒗𝒗𝑺𝑺 
[m/s] 

𝒗𝒗 
[m/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 

𝑰𝑰𝑰𝑰 
[kg*m2] 

𝑰𝑰𝑰𝑰𝑰𝑰 
[kg*m2] 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
[kg*m2] 

𝛚𝛚𝑰𝑰 
[rad/s] 

𝛚𝛚𝑰𝑰𝑰𝑰 
[rad/s] 

𝛚𝛚𝑰𝑰𝑰𝑰𝑰𝑰 
[rad/s] 𝑬𝑬𝒌𝒌𝒄𝒄𝒊𝒊  [J] 

S1
.3

-F
1 Frag 1 283.1 146.51 7.61E-03 0.31 2.70 2.72 1.05 1.10E-04 1.54E-04 2.16E-04 11.109 6.207 4.456 0.01 

Frag 2* 642.9 332.72 1.35E-02 0.37 2.73 2.75 2.44 5.55E-04 6.05E-04 7.72E-04 3.961 2.131 12.143 0.06 

S1
.3

-F
2 Frag 1 267.0 138.18 7.73E-03 0.37 2.67 2.69 0.97 9.36E-05 1.47E-04 1.92E-04 3.727 5..006 2.772 0.00 

Frag 2 525.9 272.17 9.29E-03 0.22 2.72 2.73 1.96 3.04E-04 3.86E-04 4.97E-04 4.964 5.470 4.828 0.02 

Frag 3 214.2 110.85 6.84E-03 0.42 2.57 2.61 0.83 6.40E-05 1.04E-04 1.39E-04 5.386 1.522 1.094 0.00 

S1
.3

-F
3 Frag 1 222.1 114.94 6.89E-03 0.96 2.47 2.65 0.78 6.55E-05 1.17E-04 1.48E-04 5.246 8.858 4.636 0.01 

Frag 2 536.2 277.50 9.72E-03 0.71 2.46 2.56 1.75 3.31E-04 4.45E-04 4.99E-04 4.328 1.609 3.246 0.01 

Frag 3 245.7 127.16 7.12E-03 0.94 2.42 2.60 0.73 8.30E-05 1.38E-04 1.84E-04 11.912 7.196 5.843 0.01 

S1
.3

-F
4 Frag 1 104.9 54.29 4.79E-03 0.57 2.41 2.47 0.32 1.75E-05 3.57E-05 4.57E-05 7.712 11.162 6.591 0.00 

Frag 2 576.7 298.46 8.92E-03 0.43 2.54 2.57 1.91 1956.21 2192.34 3051.39 7.101 9.751 8.122 0.05 

Frag 3* 330.4 170.99 1.02E-02 0.33 2.60 2.62 1.14 1.24E-04 2.10E-04 2.51E-04 2.829 6.310 3.864 0.01 

Notes: 
* Fragment split at second impact. Geometric information and velocities in table are referred to the fragment at first impact (before splitting). The fracture area is the sum of the fracture areas of the fragments after splitting. 
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6.5.2 Energy partition during impact  
In this section, results of test series S3.2 are presented. 22 spheres of mortar M1 were 

dropped from six different drop heights and the components of kinetic energy and energy 

dissipation were computed. All results are reported in Table 6-14 with tests sorted in 

increasing values of impact velocity (from 5.3 m/s to 9.9m/s) and all fragment characteristics 

required to compute the energy components are listed in Table B-1 in Appendix B. Note 

that only fragments with significant motion (𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 > 1 m/s) were analysed.  

The results of Table 6-14 show that the total amount of energy lost at impact slightly 

increases with increasing impact velocity, from about 83% at 5.3m/s to about 88% at 9.9m/s.  

It is also clear that the proportion of total kinetic energy after impact decreases with 

increasing impact velocity: from about 18% at 5.3m/s to about 9% at 9.9m/s. Less than 1% 

of the total kinetic energy at impact is transferred into rotation of fragments, which is largely 

due to the fact that the spheres impacted without initial rotation.  

As for series S1.3, the energy associated to the different energy transformation 

mechanisms was estimated and the following was observed:  

• ∆𝐸𝐸𝑠𝑠𝑓𝑓𝑎𝑎𝑟𝑟: the energy dissipated by displacing the slab is negligible for all tests (0.2% of 

total kinetic energy at impact), consistent with results of Section 6.5.1.  

• ∆𝐸𝐸𝑑𝑑 : the energy lost in slab/sphere deformation accounts for around 80% to 85% 

of the total kinetic energy at impact (see in Table 6-14). 

• ∆𝐸𝐸𝑓𝑓𝑟𝑟: about 3% of the total kinetic energy at impact is consumed in fragmentation 

(see in Table 6-14), which is slightly less than for series S1.3 (Section 6.5.1). 

• 𝐸𝐸𝑘𝑘𝑎𝑎: the translational kinetic energy after impact is between 20% and 7% of the total 

kinetic energy at impact (see in Table 6-14). 

Figure 6-38 shows values of energy normalised by the initial kinetic energy as a 

function of impact velocity (Figure 6-38a) and kinetic energy before impact (Figure 6-38b). 

It is relevant to remember that the range of impact velocity of 5.3 to 9.9 m/s covers the 

range of 0%-100% survival probability (see Figure 6-27).  

As mentioned previously, the energy dissipated by displacing the slab is negligible. 

Interestingly, although the impact velocity is almost doubled (from 5.3m/s to 9.9 m/s), 

covering the full survival probability (from 100% to 0%), the trends of normalised energy 

are almost constant with only very small changes. Figure 6-27 shows that the number of 
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fragments increases from 2 to 5, for an impact velocity increasing from 5.5 m/s to 10 m/s, 

hence almost tripling the amount of fragmentation energy (see Table 6-14) but the 

normalised value of fragmentation energy remains approximately constant. This is consistent 

with findings form Giacomini et al. (2009) but should be investigated over a larger range of 

impact velocity. 

 

So, to answer Question 2: under the conditions of the limited data obtained in this 

thesis, it seems that, in the range of energy including 0-100% of the survival probability, the 

energy consumed in fragmentation can be considered a constant fraction of the total kinetic 

energy at impact. As the impact energy increases, more fragments are created, leading to 

more energy dissipated in fragmentation and a constant ratio of fragmentation energy over 

impact energy. The reason for this ratio being constant is not yet explained. More research 

is needed to explain it and verify whether this observation holds for a wider range of impact 

velocities and other block shapes. 

 

The fact that energy is dissipated in fragmentation results in less kinetic energy post-

impact and less rebound. Figure 6-39 shows the theoretical coefficient of restitution 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑 

(Eq. (3-20)) not accounting for fragmentation and the 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸������� computed as square root of the 

ratio between the experimental total kinetic energy after and before impact. It can be seen 

that the experimental 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸�������  is lower than the theoretical 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑, which is due to increasing 

degree of damage and fragmentation in the spheres (Ye et al. 2019a). 

 



133 

 

 

Figure 6-38: Normalised value of energy loss at impact and (a) the total kinetic energy after impact as function of 
impact velocity and (b) kinetic energy before impact (Series S3.2). 

 

 

Figure 6-39: Theoretical and experimental values of coefficient of restitution as function of impact velocity. 𝐶𝐶𝐶𝐶𝑅𝑅𝑑𝑑 
is obtained from Eq.(3-20) and does not account for damage. 𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸������� is the experimental value defined as the 

square root of total kinetic energy after impact over total kinetic energy before impact. 
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Table 6-14 Result of energy balance computation for drop tests of series S3.2. Each energy component is expressed in absolute value (in J) and in relative value (percentage of the total kinetic 
energy before impact). 

Test 

Before impact Dissipation at impact Sum of the energy of the fragments (after impact) 
𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 𝒗𝒗𝒊𝒊𝒎𝒎𝒊𝒊 𝑬𝑬𝑘𝑘𝒃𝒃  ∆𝑬𝑬𝒔𝒔𝒔𝒔𝒊𝒊𝒃𝒃 ∆𝑬𝑬𝒅𝒅 ∆𝑬𝑬𝒇𝒇𝒄𝒄 ∆𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  𝑬𝑬𝒌𝒌𝒄𝒄𝒊𝒊  𝑬𝑬𝒌𝒌𝒊𝒊 

m/s J J % J % J % J % J % J % J % J % 

1 5.33 14.49 0.03 0.2 11.62 80.1 0.45 3.1 12.10 83.5 2.53 17.5 0.06 0.4 2.60 17.9 14.70 101.4 
2 5.49 15.29 0.03 0.2 12.30 80.4 0.46 3.0 12.79 83.7 3.01 19.7 0.03 0.2 3.04 19.9 15.84 103.5 
3 6.01 18.76 0.03 0.2 15.25 81.3 0.67 3.6 15.95 85.0 1.87 10.0 0.06 0.3 1.93 10.3 17.87 95.3 
4 6.01 18.33 0.03 0.2 14.90 81.3 0.66 3.6 15.60 85.1 2.47 13.5 0.02 0.1 2.49 13.5 18.09 98.7 
5 6.01 18.35 0.03 0.2 14.92 81.3 0.40 2.2 15.35 83.7 2.54 13.8 0.00 0.0 2.54 13.9 17.89 97.5 
6 6.02 18.74 0.03 0.2 15.24 81.3 0.63 3.4 15.90 84.8 1.82 9.7 0.01 0.1 1.83 9.8 17.73 94.6 
7 6.49 21.05 0.03 0.2 17.26 82.0 0.46 2.2 17.76 84.4 3.26 15.5 0.02 0.1 3.27 15.6 21.03 99.9 
8 6.50 21.32 0.04 0.2 17.49 82.0 0.65 3.0 18.17 85.2 3.89 18.2 0.00 0.0 3.89 18.3 22.07 103.5 
9 6.63 22.20 0.04 0.2 18.25 82.2 0.69 3.1 18.98 85.5 2.41 10.8 0.09 0.4 2.49 11.2 21.47 96.7 
10 6.63 22.72 0.04 0.2 18.68 82.2 0.61 2.7 19.33 85.1 1.94 8.5 0.05 0.2 1.99 8.8 21.32 93.8 
11 6.99 25.00 0.04 0.1 20.67 82.7 0.80 3.2 21.50 86.0 2.35 9.4 0.09 0.4 2.45 9.8 23.87 95.5 
12 7.00 25.20 0.04 0.2 20.84 82.7 0.72 2.9 21.60 85.7 2.58 10.3 0.05 0.2 2.63 10.4 24.23 96.2 
13 7.02 25.12 0.03 0.1 20.77 82.7 0.90 3.6 21.71 86.4 2.26 9.0 0.20 0.8 2.46 9.8 24.17 96.2 
14 7.02 25.19 0.04 0.1 20.83 82.7 0.93 3.7 21.80 86.5 2.11 8.4 0.09 0.4 2.20 8.7 24.00 95.3 
15 7.80 31.09 0.04 0.1 25.99 83.6 1.22 3.9 27.25 87.6 3.38 10.9 n.a. n.a. 3.38 10.9 30.63 98.5 
16 7.79 31.46 0.06 0.2 26.29 83.6 0.93 2.9 27.27 86.7 3.95 12.5 n.a. n.a. 3.95 12.5 31.22 99.2 
17 7.79 31.68 0.05 0.2 26.47 83.6 0.88 2.8 27.40 86.5 2.75 8.7 n.a. n.a. 2.75 8.7 30.15 95.2 
18 7.80 31.05 0.04 0.1 25.95 83.6 0.91 2.9 26.89 86.6 2.99 9.6 n.a. n.a. 2.99 9.6 29.89 96.3 
19 9.95 50.73 0.06 0.1 43.36 85.5 0.96 1.9 44.37 87.5 4.68 9.2 n.a. n.a. 4.68 9.2 49.05 96.7 
20 9.94 51.08 0.06 0.1 43.66 85.5 1.41 2.8 45.12 88.3 4.35 8.5 n.a. n.a. 4.35 8.5 49.48 96.9 
21 9.96 51.12 0.05 0.1 43.70 85.5 1.12 2.2 44.87 87.8 3.48 6.8 n.a. n.a. 3.48 6.8 48.35 94.6 
22 9.95 50.73 0.05 0.1 43.36 85.5 1.03 2.0 44.45 87.6 4.80 9.5 n.a. n.a. 4.80 9.5 49.25 97.1 

Notes: 
Note that a very small rotational motion was observed for tests at higher impact velocity (7.8 and 10 m/s). Hence, the rotational velocity was not computed for these tests. The rotational kinetic energy is very small 
compared to the initial kinetic energy (<1%) and has a negligible influence on the energy balance for this type of impact condition. 
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The rockfall literature lacks experimental fragmentation data, especially with 

comprehensive estimates of energy components. As highlighted in the beginning of Section 

6.5, the distribution of energy among fragments is not well understood. In one of the few 

fragmentation models (Matas et al. 2020), it is assumed that the energy is distributed 

throughout fragments proportionally to their mass. Such assumptions will be tested using 

the fragmentation data produced in this thesis (results of series S3.2).  

Figure 6-40a presents the velocity of fragments normalised by the impact velocity of 

the sphere they formed from (𝑣𝑣𝑖𝑖/𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) as a function of fragment mass.  Each data point 

corresponds to one fragment. Figure 6-40a shows the absence of a clear relationship between 

normalised velocity and fragment mass. 95% of data points are contained between a lower 

bound of 19% and an upper bound of 42%.  

Figure 6-40b then presents fragment kinetic energy normalised by total kinetic energy 

before impact (𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎 /𝐸𝐸𝑘𝑘

𝑏𝑏) as a function of fragment mass. Again, each data point corresponds 

to one fragment. With a 𝑅𝑅2 value of 0.95, Figure 6-40b suggests that a trend may exist 

between normalised energy and fragment mass. However, it can be shown that the 

normalised energy is equal to: 

 𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎

𝐸𝐸𝑘𝑘𝑟𝑟
=
𝑚𝑚𝑖𝑖

𝑚𝑚
�
𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎

�
2

 (6-8) 

where 𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎 , is the total kinetic energy after impact of the fragment 𝑖𝑖, 𝐸𝐸𝑘𝑘𝑟𝑟  is the total kinetic 

energy before impact, 𝑚𝑚𝑖𝑖 and 𝑚𝑚 are the masses of the fragment 𝑖𝑖 and the impacting sphere, 

respectively, 𝑣𝑣𝑖𝑖 is the absolute velocity of the fragment 𝑖𝑖 after impact and 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎 is the impact 

velocity. Figure 6-40a shows that, for 95% of the data the bounds of normalised velocity are 

0.19 and 0.42, so the bounds of the squared normalised velocity are 0.192 and 0.422, i.e. 0.036 

and 0.176. Data of Figure 6-40b are proportional to these two bounds (0.036 and 0.176) 

weighted by the relative mass of fragment (𝑚𝑚𝑖𝑖/𝑚𝑚), as per Eq. (6-8). The implication of this 

is that on the right-hand side of Figure 6-38b, where 𝑚𝑚𝑖𝑖/𝑚𝑚~1, the scattering of Figure 6-

38a largely remains; but on the left hand side where 𝑚𝑚𝑖𝑖/𝑚𝑚 ≪1, the scattering is much smaller, 

leading to high values of 𝑅𝑅2. So, the high goodness of fit of Figure 6-38b comes from the 

small fragments but significant scattering still exists for large fragments, i.e. those posing a 

high risk. 
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Figure 6-40: (a) Fragment velocity over impact velocity (𝑣𝑣𝑖𝑖/𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) as a function of fragment mass. Horizontal 
lines represent the 95% confidence interval. (b) Total kinetic energy of fragments over kinetic energy before 

impact (𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎 /𝐸𝐸𝑘𝑘𝑟𝑟) as a function of fragment mass.  
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In the following, the error made when assigning kinetic energy to fragments 

proportionally to their mass is assessed. To do so, the two main dissipative components 

considered are plastic deformation (∆𝐸𝐸𝑑𝑑) and fragmentation (∆𝐸𝐸𝑓𝑓), for which experimental 

values are used, for each fragment. In a real rockfall prediction exercise, one could predict 

the fragment size distribution using the fractal fragmentation model (Ruiz-Carulla et al. 

2017), and get the fragmentation energy from the surface energy; the energy dissipated by 

plastic deformation can be computed from the theoretical coefficient of restitution.  

With ∆𝐸𝐸𝑑𝑑 and ∆𝐸𝐸𝑓𝑓 known, it is possible to compute the total kinetic energy after 

impact: 

 𝐸𝐸𝑘𝑘𝑎𝑎 = 𝐸𝐸𝑘𝑘𝑟𝑟 − ∆𝐸𝐸𝑑𝑑 − ∆𝐸𝐸𝑓𝑓 (6-9) 

Assuming that the total kinetic energy will be distributed to all fragments proportionally to 

their mass, the kinetic energy of fragment 𝑖𝑖 𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎  can be expressed as: 

 𝐸𝐸𝑘𝑘,𝑖𝑖
𝑎𝑎 =

𝑚𝑚𝑖𝑖

𝑚𝑚
∙ 𝐸𝐸𝑘𝑘𝑎𝑎 (6-10) 

where 𝑚𝑚𝑖𝑖 is the mass of the fragment 𝑖𝑖, 𝑚𝑚 is the initial mass of the sphere and 𝐸𝐸𝑘𝑘𝑎𝑎 is the total 

kinetic energy after impact. 

Figure 6-41a shows a comparison between the kinetic energy predicted using Eq. 

(6-10) and the experimental values of kinetic energy for all fragments, while Figure 6-41b 

presents the cumulative distribution of relative error, calculated as 100 x (predicted value-

experimental value)/experimental value. Positive values of relative error reflect an 

overestimation of energy and vice versa.  

Consistent with Figure 6-40, Figure 6-41a shows a significant amount of scattering. 

The predicted values form a cloud around the one-to-one line with the largest scattering for 

the biggest fragments. This poor quality of prediction is corroborated by Figure 6-41b where 

30% of predictions have a relative error of less than 20%; 60% of predictions have a relative 

error of less than 50%; and 10% of predictions have a relative error of higher than 150%. 

Although the maximum relative error is as high as 1200%, it is only for small fragments, with 

very low values of kinetic energy and low significance from a risk point of view. 
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Figure 6-41: (a) Predicted kinetic energy (using Eq. (6-10)) vs measured kinetic energy for all fragments of series 
S3.2. (b) Cumulative distribution of the relative error on the prediction of kinetic energy for all fragments. Dashed 

horizontal lines represent ±50% of error. 

 

So, to answer Question 3: from the limited data obtained in this study, it seems that 

assigning kinetic energy to fragments based on their mass can lead to significant error in 

rockfall modelling. However, at this stage, there does not seem to be a superior alternative 

approach and more research is required. 
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The last aspect that will be discussed in this section is the velocity of fragments and, 

in particular, how the vertical and horizontal components of velocity change with increasing 

impact velocity. Figure 6-42 illustrates the evolution of the absolute velocity of fragments 

normalised by the impact velocity (𝑣𝑣𝑖𝑖/𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎), with impact velocity. As for previous 

observations, the scattering is quite large and increasing with the impact velocity. The upper 

bound of values seems approximatively constant (around 0.45) but the lower bound 

decreases progressively. This evolution reflects the fact that under increasing impact velocity, 

more fragments of different sizes are produced, leading to a broader range of velocities post-

impact.  

 

Figure 6-42: Absolute velocity of the fragment 𝑖𝑖 over impact velocity (𝑣𝑣𝑖𝑖/𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎) vs. impact velocity. Points with the 
same colour (red, green, blue and grey) at each impact velocity represent fragments of the same test at a 

particular value of impact velocity. 

Increasing the impact velocity also changes the trajectory of fragments post-impact, 

as shown in Figure 6-43, which presents the ratio of the vertical component of velocity to 

the horizontal component of velocity, for each fragment (Figure 6-43a shows all data while 

Figure 6-43b shows the average value at each impact velocity). High values of 𝑣𝑣𝑧𝑧,𝑖𝑖/𝑣𝑣𝑥𝑥𝑥𝑥,𝑖𝑖 

correspond to a high rebound (launch angle close to 90º from horizontal), while low values 

correspond to fragments travelling parallel to the impacted surface.  

Under low impact velocity, the fragments tend to bounce but, as the impact velocity 

increases, they tend to be ejected sideways. Such observation is very relevant in order to 

realistically model trajectory of fragments. 
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Figure 6-43: Ratio of vertical (𝑣𝑣𝑧𝑧,𝑖𝑖) and horizontal (𝑣𝑣𝑥𝑥𝑥𝑥,𝑖𝑖) component of velocity for all fragments as function of 
impact velocity: (a) all data, (b) average values. 

 

In conclusion, in the range of impact energy analysed, the ratio of energy consumed 

in fragmentation over kinetic energy before impact seems constant (between 3% and 5% of 

the kinetic energy before impact, considering data of M1 and M1*, respectively). There does 

not seem to be a clear relationship between total kinetic energy of fragments and their mass, 

and when trying to assign kinetic energy to fragments based on their mass significant relative 

errors were obtained. Lastly, there is a correlation between the trajectory of the fragments 

and the initial impact velocity of the block: at “low velocity” (between 5.5 m/s and 6.5 m/s) 

the main component of the fragment velocity is the vertical component (𝑣𝑣𝑧𝑧), while with the 

increasing of impact velocity (and number of fragments) the main component of the velocity 

become the horizontal velocity (𝑣𝑣𝑥𝑥𝑥𝑥). All of these observations are relevant for rockfall 

modelling. 
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7 Conclusions and future research 

Although rock fragmentation has been frequently observed during rockfalls, it is 

rarely considered in rockfall analysis and for the design of rockfall protection structures. This 

can be attributed to the complexity and lack of understanding of the physical process. Indeed, 

experimental and numerical studies showed that many factors influence the occurrence and 

outcomes of fragmentation in a rockfall event. More research is hence required to better 

understand the fragmentation process and adequately model it.  

In this PhD research, a specifically-designed apparatus was built and validated to 

record and study the complex phenomenon of fragmentation of rocks upon impact. This 

experimental setup comprises a custom-made hexagonal fragmentation cell in which natural 

or artificial rock blocks can be dropped in a safe and controlled way onto an instrumented 

concrete slab to simulate the impact with a rock slope. The impact can be recorded with four 

high-speed cameras and two mirrors, offering six unique viewpoints. In order to eliminate 

some inherent complexities of natural rock and irregularly shaped blocks, and to achieve 

better control and repeatability of results, mortar spheres were used. During the validation 

process, attention was focused on devising a method to evaluate the impact force and 

impulse on the sphere from the measurement of forces under the slab. Another aspect given 

close attention was 3D tracking accuracy, with an emphasis on the influence that object 

shape, number of viewpoints and 3D object representation have on the calculation of 

rotational velocity. Results showed the apparatus and methods developed in this thesis allow 

for accurate capture of 3D trajectories of regular and irregular objects, in translation and/or 

rotation, and reliable prediction of the magnitude of impulse at impact. 

Four series of drop tests were conducted using mortars of four different strengths 

and spheres of three diameters, in order to produce high-quality data that can be used to 

advance knowledge of rockfall fragmentation. 
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The main conclusions to be drawn from the 360 drop tests carried out are: 

• In the range of impact velocities corresponding to a 100%-0% range of survival 

probability, less than five large and a few small fragments can be expected 

independently by the size and the strength of the mortar sphere, while for higher 

values of impact velocities, more and more fragments are produced and the size 

of largest fragments progressively decreases with increasing velocity. The 

fragment size distributions (FSD) obtained in this research are not linear in a 

logarithmic scale, hence it is in contrast with a scale invariant fractal distribution 

of fragments. 

• Fragmentation survival probability can be approximated as a linear function of 

the kinetic energy or impact velocity and is both material strength dependent 

and sphere diameter dependent. The existence of a survival probability confirms 

the fact that fragmentation is not a threshold phenomenon. 

• The total normalised amount of energy loss during the impact increases with 

impact velocity, consequently the total kinetic energy after impact decreases. 

Although the quantity of damage and fragments increases with impact velocity, 

the energy loss to create the fracture surfaces is a constant fraction of the kinetic 

energy before impact and it can be estimated using Eq. (3-17). There is absence 

of a clear relationship between normalised velocity and fragment mass. 

• The trajectories of fragments are related to the impact velocity. At low impact 

velocity, the fragments tend to bounce but, as the impact velocity increases, they 

tend to be ejected sideways. No high-flying fragments were observed. 

A significant contribution of this research to the field of rockfall is the development 

and validation of a novel model that can predict the impact survival probability of brittle 

homogenous spheres, to serve as a basis for further development. The rationale of the novel 

model is that (1) the impact survival probability can be entirely defined by the Weibull shape 

and scale parameters and (2) it is possible to predict these two parameters from the statistical 

variability of mechanical properties of the material measured under quasi static loading. Of 

particular importance is the response of the material in indirect tension (Brazilian tests). The 

prediction process also involves three theoretically-derived conversion factors that account 

for size, shape and strain rate effects, two of which are based on Hertz’s elastic contact 

theory, assuming elastic deformations of the bodies in contact.  
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Extensive material testing was first conducted in order to assess the statistical 

variability in material properties in terms of force, stress, toughness and work required to 

reach failure. The measured mechanical properties of the mortar were found to generally 

follow Weibull distributions. Then, the predicted conversion factors were first validated 

against their experimental counterparts, with a maximum relative error of 25%. The impact 

survival probabilities were then predicted using both a Weibull function and a linear function, 

with the latter option being considered to improve the prediction at the 0% and 100% 

survival probability limits. For a Weibull function, the model can predict the impact survival 

probability with a maximum error of 10% but this is only possible by using statistical 

information from compression tests on spheres of different diameters, which is not very 

practical. The possibility to predict the impact survival probability (in a linear form) from 

Brazilian tests was then assessed. The motivation for this follows from a view that the 

Brazilian tests are an easy and less time-consuming type of test that could be readily 

performed in practice. The maximum relative error was found to be around 27% but about 

two thirds of the data points were predicted with an error of less than 12%, which 

demonstrates an excellent predictive ability of the novel model. Such a predictive model is 

the first step towards predicting whether, in a given geological setting, a rock is likely to 

fragment upon impact or not. It has to be borne in mind that there is currently no method 

or model in the literature that can be used to predict the survival probability of brittle spheres, 

let alone natural blocks. 

The outcomes of this PhD thesis constitute a significant step forward in the 

understanding of fragmentation in the context of rockfall but the specific findings strictly 

apply to mortar spheres under normal impact without rotation, which is quite restrictive. 

Consequently, more research is required to understand the influence of rotational energy, 

irregular block shape, presence and properties of discontinuities and angle of impact. All 

these parameters are representative of realistic rockfall conditions. It would also be useful to 

conduct the energy analysis on the fragmentation tests at higher energy to obtain validation 

of the idea that the energy dissipated in fragmentation is approximately a constant fraction 

of the impact energy and to identify the conditions leading to high-flying fragments. It is 

finally suggested that the robustness of the survival probability prediction model should be 

tested by comparing predictions and experimental data for a greater range of mortar strength 

and larger spheres and ultimately real rocks. 
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Appendix A 

An impact survival probability following a Weibull distribution and expressed in 

terms of kinetic energy is written as:  

 

𝐼𝐼𝑆𝑆(𝐸𝐸𝑘𝑘(𝐷𝐷)
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(A-1) 

with 𝐼𝐼𝑆𝑆(𝐸𝐸𝐾𝐾(𝐷𝐷)
𝑟𝑟 ) in percent and 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑟𝑟  in joules.  

The slope of the central part of the Weibull distribution can be approximated as the gradient 

𝐺𝐺 of the cumulative Weibull curve at the critical value of energy, which is written: 

 
𝐺𝐺 =  
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𝑐𝑐𝑟𝑟  (A-2) 

The linear evolution of 𝐼𝐼𝑆𝑆(𝐸𝐸𝐾𝐾(𝐷𝐷)) with 𝐸𝐸𝐾𝐾(𝐷𝐷) can hence be formulated as: 

 
𝐼𝐼𝑆𝑆�𝐸𝐸𝐾𝐾(𝐷𝐷)� =  

−100 ∙ 𝜇𝜇𝐸𝐸
𝑒𝑒 ∙ 𝐸𝐸𝐾𝐾(𝐷𝐷)

𝑐𝑐𝑟𝑟 ∙ 𝐸𝐸𝐾𝐾(𝐷𝐷) + 𝑏𝑏 (A-3) 

Since for 𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟 = 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑐𝑐𝑟𝑟 , 𝐼𝐼𝑆𝑆�𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑐𝑐𝑟𝑟 � = 37%, we can identify 𝑏𝑏: 

 
𝑏𝑏 =  37 +

100 ∙ 𝜇𝜇𝐸𝐸
𝑒𝑒

 (A-4) 

Consequently, the linear function 𝐼𝐼𝑆𝑆(𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟 ) can be written as:  

 
𝐼𝐼𝑆𝑆�𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑟𝑟 � = 37 +
100 ∙ 𝜇𝜇𝐸𝐸

𝑒𝑒
∙ �1 −

𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟

𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑐𝑐𝑟𝑟 � (A-5) 
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In order to predict the kinetic energy for a given survival probability Eq. (A-5) needs to be 

re-formulated as: 

 
𝐸𝐸𝑘𝑘(𝐷𝐷)
𝑟𝑟 = 𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑐𝑐𝑟𝑟 �1 −
�𝐼𝐼𝑆𝑆�𝐸𝐸𝑘𝑘(𝐷𝐷)

𝑟𝑟 � − 37� ∙ 𝑒𝑒
100 ∙ 𝜇𝜇𝐸𝐸

� (A-6) 

Eq. (A-6) can also be applied to the impact velocity: 

 
𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷) = 𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷)

𝑐𝑐𝑟𝑟 �1 −
�𝐼𝐼𝑆𝑆�𝑣𝑣𝑖𝑖𝑖𝑖𝑎𝑎(𝐷𝐷)� − 37� ∙ 𝑒𝑒

100 ∙ 𝜇𝜇𝑉𝑉
� (A-7) 
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Appendix B 

Table B-1 Characteristics of fragments with significant motion for all tests of S3.2. 

  
Mass 
[g] 

Volume 
[cm3] 

Fracture 
area [m2] 

𝒗𝒗𝒙𝒙𝒙𝒙 
[m/s] 

𝒗𝒗𝑺𝑺 
[m/s] 

𝒗𝒗 
[m/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝛚𝛚𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰𝑰𝑰 

[rad/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 

1 
Frag 1 632.9 325.02 8.12E-03 0.20 2.17 2.17 1.50 4.49E-04 4.73E-04 6.69E-04 2.91 2.16 4.09 0.01 

Frag 2 386.5 198.49 8.10E-03 0.10 2.30 2.30 1.02 1.96E-04 2.22E-04 3.36E-04 11.94 5.80 15.01 0.06 

2 Frag 1 560 287.59 8.23E-03 0.48 2.34 2.39 1.60 3.67E-04 3.79E-04 5.51E-04 2.49 3.25 1.83 0.00 
Frag 2 452.8 232.53 8.27E-03 0.40 2.50 2.53 1.45 2.75E-04 2.95E-04 4.54E-04 6.60 11.00 2.68 0.03 

3 
Frag 1* 774.4 397.69 1.67E-02 0.12 2.15 2.16 1.80 3.00E-04 4.27E-03 4.06E-04 2.01 1.94 3.91 0.01 

Frag 2 237 121.71 7.01E-03 0.38 2.07 2.11 0.53 8.38E-05 1.11E-04 1.63E-04 8.51 1.79 3.75 0.00 

4 

Frag 1 4.8 2.47 6.48E-04 1.05 1.24 1.63 0.01 7.34E-08 2.13E-07 2.32E-07 1.08 11.19 34.94 0.00 
Frag 2 126.7 65.07 5.32E-03 1.31 1.76 2.20 0.31 3.30E-05 4.21E-05 6.77E-05 11.05 34.37 5.06 0.03 
Frag 3 97.1 49.87 4.74E-03 0.70 1.54 1.69 0.14 1.49E-05 3.40E-05 4.16E-05 4.36 11.15 6.86 0.00 
Frag 4* 868.7 446.12 1.33E-02 0.19 1.80 1.81 1.43 7.79E-04 8.55E-04 8.82E-04 1.80 3.77 6.12 0.02 

5 
Frag 1 144.2 74.05 5.53E-03 0.43 1.78 1.83 0.24 3.36E-05 5.44E-05 7.69E-05 5.08 11.36 3.21 0.00 

Frag 2* 928.8 476.98 1.70E-02 0.20 1.84 1.85 1.59 9.15E-04 9.91E-04 1.05E-03 2.88 1.93 1.66 0.01 

6 
Frag 1 264.2 135.68 7.12E-03 0.51 2.06 2.12 0.59 1.02E-04 1.33E-04 1.98E-04 2.11 3.29 1.84 0.00 

Frag 2 750.9 385.62 7.16E-03 0.30 2.26 2.28 1.95 5.81E-04 6.14E-04 7.98E-04 1.91 0.73 0.98 0.00 

7 
Frag 1 477.49 245.21 8.34E-03 0.26 2.95 2.96 2.10 2.69E-04 3.01E-04 4.32E-04 1.20 3.77 2.28 0.00 

Frag 2* 530.91 272.65 1.48E-02 0.66 2.59 2.68 1.90 8.12E-05 1.75E-04 1.83E-04 1.13 0.17 1.25 0.00 

8 
Frag 1 424.88 218.20 8.33E-03 1.04 2.18 2.42 1.24 3.88E-04 4.02E-04 5.82E-04 6.55 2.49 1.18 0.01 

Frag 2 574.41 294.99 8.26E-03 0.71 2.55 2.65 2.02 2.47E-04 2.71E-04 4.14E-04 2.41 7.86 0.98 0.01 

9 
Frag 1 236.9 121.66 7.32E-03 0.77 1.84 2.00 0.47 7.09E-05 1.23E-04 1.54E-04 8.63 9.93 8.65 0.01 
Frag 2 660.7 339.30 9.18E-03 0.40 1.90 1.94 1.25 4.52E-04 5.05E-04 6.67E-04 3.42 7.71 3.98 0.02 
Frag 3 132.6 68.10 5.43E-03 1.09 1.59 1.92 0.25 2.87E-05 5.03E-05 6.90E-05 30.15 8.37 7.24 0.02 

10 
Frag 1 301.6 154.89 7.92E-03 0.90 1.79 2.00 0.60 1.18E-04 1.68E-04 2.26E-04 6.18 10.76 3.83 0.01 
Frag 2 297.2 152.63 8.38E-03 0.59 2.19 2.27 0.77 1.02E-04 1.81E-04 2.14E-04 7.06 15.49 8.78 0.03 
Frag 3 404.8 207.88 8.40E-03 0.80 2.15 2.29 1.06 1.98E-04 2.50E-04 3.47E-04 9.60 14.62 5.40 0.04 
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Mass 
[g] 

Volume 
[cm3] 

Fracture 
area [m2] 

𝒗𝒗𝒙𝒙𝒙𝒙 
[m/s] 

𝒗𝒗𝑺𝑺 
[m/s] 

𝒗𝒗 
[m/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝛚𝛚𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰𝑰𝑰 

[rad/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 

11 
Frag 1 217.9 111.90 7.89E-03 0.98 1.94 2.17 0.51 5.46E-05 1.28E-04 1.37E-04 6.67 3.30 5.33 0.00 
Frag 2 348.5 178.97 8.60E-03 1.05 2.00 2.26 0.89 1.49E-04 2.12E-04 2.82E-04 4.72 6.80 3.71 0.01 
Frag 3* 458.5 235.46 9.36E-03 0.92 2.09 2.28 1.19 2.49E-04 2.86E-04 4.14E-04 3.99 14.94 1.98 0.03 

12 

Frag 1 199.6 102.50 7.49E-03 1.23 1.51 1.95 0.38 4.63E-05 1.05E-04 1.15E-04 11.71 13.99 12.34 0.02 
Frag 2 309 158.69 8.05E-03 1.46 1.37 2.01 0.62 1.19E-04 1.71E-04 2.29E-04 8.28 15.39 8.02 0.03 
Frag 3 377.7 193.97 9.92E-03 0.84 1.97 2.14 0.87 1.52E-04 2.73E-04 3.04E-04 3.17 13.54 3.52 0.03 
Frag 4* 126.5 64.96 7.89E-03 1.16 1.78 2.13 0.29 2.19E-05 5.80E-05 6.39E-05 9.95 15.16 5.70 0.01 

13 

Frag 1 345.7 177.53 8.25E-03 1.30 1.91 2.31 0.92 1.39E-04 2.00E-04 2.64E-04 7.22 20.13 7.83 0.05 
Frag 2 345.9 177.64 8.08E-03 1.52 1.58 2.20 0.83 1.48E-04 1.98E-04 2.74E-04 3.39 13.77 5.03 0.02 
Frag 3* 293.8 150.88 9.34E-03 1.26 1.46 1.92 0.54 1.07E-04 1.56E-04 2.07E-04 3.39 13.77 5.03 0.02 
Frag 4 27.1 13.92 2.82E-03 0.78 1.22 1.44 0.03 2.49E-06 2.89E-06 2.99E-06 4.94 4.71 4.91 0.00 

14 

Frag 1* 367.9 188.93 9.71E-03 1.52 1.66 2.25 0.93 1.68E-04 2.05E-04 2.90E-04 12.58 28.09 5.57 0.10 
Frag 2 259.9 133.47 7.73E-03 1.61 1.19 2.00 0.52 8.31E-05 1.38E-04 1.75E-04 18.86 8.24 14.54 0.04 
Frag 3 296.6 152.32 9.96E-03 0.99 1.63 1.91 0.54 9.57E-05 2.13E-04 2.25E-04 8.08 7.15 18.20 0.05 
Frag 4 86.2 44.27 4.81E-03 1.64 1.17 2.02 0.18 1.09E-05 3.35E-05 3.76E-05 27.02 11.72 19.92 0.01 

15 

Frag 1 266.7 136.96 7.69E-03 1.62 1.14 1.99 0.53 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 109.4 56.18 5.37E-03 1.61 1.23 2.03 0.22 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 317.6 163.10 1.28E-02 0.60 1.52 1.63 0.42 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4* 83.1 42.68 7.04E-03 1.31 1.58 2.05 0.18 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5 156.8 80.52 5.96E-03 1.61 1.33 2.09 0.34 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 6 77.6 39.85 4.60E-03 1.43 0.91 1.69 0.11 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

16 

Frag 1 6.5 3.34 8.56E-04 0.33 2.03 2.06 0.01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 224.3 115.19 9.74E-03 0.64 2.65 2.72 0.83 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 257.8 132.39 7.55E-03 1.54 2.14 2.64 0.90 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4 138.2 70.97 5.95E-03 1.36 2.29 2.66 0.49 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5 405.5 208.24 8.95E-03 0.84 2.91 3.03 1.86 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

17 

Frag 1 9.8 5.03 9.48E-04 0.26 1.15 1.18 0.01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 144 73.95 6.18E-03 1.52 1.61 2.21 0.35 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 482.9 247.99 9.40E-03 1.17 1.95 2.27 1.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4 3 1.54 1.11E-03 0.59 1.59 1.70 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5 104.2 53.51 5.27E-03 1.53 2.05 2.56 0.34 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 6 299.8 153.96 8.35E-03 1.26 1.95 2.32 0.81 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
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Mass 
[g] 

Volume 
[cm3] 

Fracture 
area [m2] 

𝒗𝒗𝒙𝒙𝒙𝒙 
[m/s] 

𝒗𝒗𝑺𝑺 
[m/s] 

𝒗𝒗 
[m/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

[kg*m2] 
𝛚𝛚𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰 

[rad/s] 
𝛚𝛚𝑰𝑰𝑰𝑰𝑰𝑰 

[rad/s] 𝑬𝑬𝒌𝒌𝒕𝒕𝒊𝒊  [J] 

18 

Frag 1 14.9 7.65 2.57E-03 0.28 1.30 1.33 0.01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 250.2 128.49 7.49E-03 2.22 1.24 2.54 0.81 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 432 221.85 1.03E-02 1.55 1.83 2.40 1.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4 254.8 130.85 8.23E-03 1.81 1.55 2.38 0.72 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5 66.5 34.15 4.01E-03 2.40 0.73 2.51 0.21 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

19 

Frag 1 23.59 12.11 3.76E-03 1.14 -0.83 1.41 0.02 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 447.72 229.93 8.50E-03 2.49 0.27 2.50 1.40 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 18.99 9.75 2.17E-03 4.01 -0.36 4.03 0.15 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4* 194.25 99.76 8.92E-03 2.97 0.50 3.01 0.88 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5* 333.71 171.38 1.67E-02 2.44 0.38 2.47 1.02 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

20 

Frag 1 205.88 105.73 7.01E-03 3.01 0.47 3.05 0.95 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2* 288.67 148.25 1.60E-02 2.03 0.64 2.13 0.66 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 157.65 80.96 8.55E-03 3.03 0.96 3.18 0.80 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4* 91.77 47.13 5.43E-03 4.24 0.49 4.26 0.83 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5 217.13 111.51 4.77E-03 2.77 0.35 2.79 0.85 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 6 53.01 27.22 6.04E-03 3.12 0.50 3.16 0.26 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

21 

Frag 1 162.53 83.47 8.08E-03 3.09 -0.19 3.10 0.78 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 317.87 163.24 8.06E-03 2.43 0.28 2.44 0.95 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 214.85 110.34 7.44E-03 3.40 0.09 3.40 1.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4 319.03 163.84 1.06E-02 3.20 0.68 3.27 1.71 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

22 

Frag 1 441.1 226.53 1.01E-02 2.60 0.12 2.60 1.49 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 2 225.82 115.97 7.44E-03 3.31 -0.06 3.31 1.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 3 9.67 4.97 1.79E-03 2.22 0.57 2.29 0.03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 4 0.22 0.11 2.50E-03 0.96 0.27 0.99 0.00 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 5* 139.94 71.87 8.45E-03 3.72 0.18 3.72 0.97 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Frag 6 170.98 87.81 6.65E-03 3.54 0.03 3.54 1.07 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Note: 
*   Fragment split at second impact. Geometric information and velocities in table are referred to the fragment at first impact (before splitting). The fracture area is the sum of the fracture areas of the fragments after splitting. 
- Note that a very small rotational motion was observed for tests at higher impact velocity (7.8 and 10 m/s). Hence, the rotational velocity was not computed for these tests. The rotational kinetic energy is very small 

compared to the initial kinetic energy (<1%) and has a negligible influence on the energy balance for this type of impact condition. 
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